
PolySpace™ Client/Server for C 5
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

PolySpace™ Client/Server for C User’s Guide

© COPYRIGHT 1999–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2008 Online Only Revised for Version 5.1 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

PolySpace™ Documentation Set

1
About this Guide . 1-2

How to Use this Guide . 1-3
Analyzing One File . 1-3
Analyzing Code Generated from Simulink® Models 1-4
Analyzing Multiple Files . 1-4
Detailed Contents . 1-4

Getting Started

2
General Requirements . 2-2

Computer Configuration . 2-2
Timing Information . 2-2
Installation Guide . 2-2
Structure of this Document . 2-3

PolySpace™ Client — Analyzing a Single C File 2-5
Overview . 2-5
Analysis Prerequisites . 2-5
Setting Up a PolySpace™ Client™ for C/C++ Analysis 2-6
PolySpace™ Client™ for C/C++: Running the Analysis . . . 2-12

PolySpace™ Viewer — Exploring Results 2-20
Overview . 2-20
Modes of Operation . 2-20
Download Results into the Viewer . 2-22
Reviewing PolySpace™ Results in “Expert” Mode

(“example.c”) . 2-24
Methodological Assistant . 2-38
Report Generation . 2-45

iii

Setting Up and Launching the MISRA C® Checker 2-50
Before You Begin . 2-50
Selecting MISRA C® Rules to Check 2-52
Running the MISRA® Checker . 2-59

Launching PolySpace™ Analysis Remotely 2-62
Overview . 2-62
Launching an Analysis . 2-62
Management of PolySpace™ Analysis in Remote: the

PolySpace™ Spooler . 2-64
Batch Commands . 2-67
Sharing Analyses Between Accounts 2-69

Summary . 2-71

Analysis Setup

3
Compile Errors . 3-2

Overview . 3-2
Messages . 3-2
Compiling Operating System Dependent Code (OS-target

issues) . 3-6
Target Specific Issues . 3-9
Assembly Code . 3-23
Dealing with Backward “goto” Statements 3-29

Link Messages . 3-32
Overview . 3-32
Function: Wrong Argument Type . 3-32
Function: Wrong Argument Number 3-33
Variable: Wrong Type . 3-34
Variable: Signed/Unsigned . 3-34
Variable: Different Qualifier . 3-35
Variable: Array Against Variable . 3-36
Variable: Wrong Array Size . 3-36
Missing Required Prototype for varargs 3-37
Can an Application without “main” be Analyzed? (For non

Client mode only) . 3-38

iv Contents

Stubbing Errors . 3-40
Errors when Compiling _polyspace_stdstubs.c 3-40
Errors when Creating Automatic Stubs 3-45
How to Gather Compilations Options Efficiently 3-47
Stubbing . 3-48

Intermediate Language Errors . 3-57

Advanced Setup . 3-59
Variables — Declaration and Definition 3-59
Types Promotion . 3-60
Code Preparation for Variables . 3-63
Code Preparation for Built-in Functions 3-69
My Code is Multitasking . 3-69

PolySpace™ Software Day to Day Usage

4
PolySpace™ In One Click Overview 4-2

Using PolySpace™ In One Click . 4-3
Overview . 4-3
Creating an Active Configuration File Project 4-3
Using the TaskBar Icon . 4-3

Using Right-Click to Launch PolySpace™
Verification . 4-6

MISRA® Checker

5
PolySpace™ MISRA® Checker Overview 5-2

Rules Supported . 5-4
Language Extensions . 5-5

v

Character Sets . 5-5
Identifiers . 5-6
Types . 5-7
Constants . 5-8
Declarations and Definitions . 5-9
Initialization . 5-11
Arithmetic Type Conversion . 5-12
Pointer Type Conversion . 5-16
Expressions . 5-17
Control Statement Expressions . 5-20
Control Flow . 5-21
Switch Statements . 5-23
Functions . 5-24
Pointers and Arrays . 5-25
Structures and Unions . 5-25
Preprocessing Directives . 5-26
Standard Libraries . 5-30
Run-Time Failures . 5-32

Rules Partially Supported . 5-33
Environment . 5-33
Language Extension . 5-35
Identifier . 5-35
Declarations and Definitions . 5-36
Expressions . 5-37
Control Statement Expressions . 5-38
Control Flow . 5-40
Switch Statements . 5-40
Functions . 5-41
Pointers and Arrays . 5-42
Preprocessing Directives . 5-43

Rules Not Checked . 5-45
Environment . 5-45
Language Extensions . 5-46
Documentation . 5-47
Types . 5-48
Functions . 5-48
Pointers and Arrays . 5-48
Structures and Unions . 5-49
Standard Libraries . 5-49

vi Contents

Data Range Specifications

6
Overview . 6-2

File Format . 6-3

Variable Scope . 6-5

Reduce Oranges with DRS . 6-7
Perform Efficient Module Testing . 6-7
Reduce Oranges with the —data-range-specification

option . 6-8

Using PolySpace™ Model Link Products

7
Overview of PolySpace™ Model Link Products 7-2

Getting Started . 7-3
Overview . 7-3
Creating a Simulink® Model and Generating Production

Code . 7-3
Starting the PolySpace™ Analysis . 7-9
Fixing an Error in the Design and the Simulink® Model . . 7-13
Base Workspace vs. PolySpace™ Data Ranges 7-18

Advanced Setup . 7-26
Hand-written Code . 7-26
Target Production Environment . 7-28
Creating a PolySpace™ Configuration File Template 7-30
Using the PolySpace™ Blocks Available in the Simulink®

Library . 7-33

PolySpace™ Utilities . 7-35
Overview of PolySpace™ Utilities . 7-35
Open PolySpace™ Results . 7-36

vii

PolySpace Enable COM Server . 7-36
PolySpace™ Menu . 7-37
PolySpace™ Project Configuration 7-38
Archives Files Produced for the PolySpace™ Analysis 7-39
PolySpace™ Commands Available in Batch Mode as

M-Functions . 7-41

Code Generator Specific Information 7-43
PolySpace™ Model Link™ SL Product 7-43
PolySpace™ Model Link™ TL Product 7-44

Results Review

8
Basics: Prerequisites to Reviewing PolySpace™

Results . 8-2
Overview . 8-2
Grey Follows Red . 8-3
What is the Message and What does it Mean? 8-4
What is the C Explanation . 8-5
Specific Check Analysis . 8-7

Colored Source Code for C . 8-14
Illegal Pointer Access to Variable or Structure Field:

IDP . 8-15
Array Conversion Must Not Extend Range: COR 8-16
Array Index Within Bounds: OBAI 8-17
Initialized Return Value: IRV . 8-18
Non-Initialized Variables: NIV/NIVL 8-19
Non-Initialized Pointer: NIP . 8-20
Power Arithmetic: POW . 8-20
User Assertion: ASRT . 8-21
Scalar and Float Underflows: UNFL 8-23
Scalar and Float Overflows: OVFL 8-23
Float Underflows and Overflows: UOVFL 8-24
Scalar or Float Division by Zero: ZDV 8-28
Shift Amount in 0..31 (0..63):SHF . 8-28
Left Operand or Left Shift is Negative: SHF 8-29
Function Pointer Must Point to a Valid Function: COR . . . 8-30
Wrong Type for Argument: COR . 8-31

viii Contents

Wrong Number of Arguments: COR 8-32
Wrong Return Type of a Function Pointer: COR 8-33
Wrong Return Type for Arithmetic Functions: COR 8-33
Pointer Within Bounds: IDP . 8-34
Non Termination of Call or Loop . 8-49
Unreachable Code: UNR . 8-58
Value on Assignment: VOA . 8-60
Inspection Points: IPT . 8-62

PolySpace™ Methodological Guide

9
Overview . 9-2

PolySpace™ Usage . 9-5
Overview of the PolySpace™ Approach 9-5
Standard Development Process . 9-10
Rigorous Development Process: Introducing Tools and

Coding Rules . 9-14
A Quality/Qualification Approach . 9-17
Code Acceptance Criterion . 9-18

PolySpace™ Activities . 9-20
Review Run Time Errors: Fix Red Errors 9-20
Review Dead Code Checks: Why is Grey Code

Interesting . 9-21
How to Find a Maximum Number of Bugs Within an Hour

Reviewing Oranges: Selective Orange Review 9-23
Cost and Benefits of an Exhaustive Orange Review at

Integration Phase . 9-27
Integration Bug Tracking . 9-29
How to Find Bugs in Unprotected Shared Data 9-30
Dataflow Analysis . 9-31
Data and Coding Rules . 9-31

Automatically Testing Orange Code 9-33
PolySpace™ Automatic Orange Tester 9-33
Using the Automatic Orange Tester 9-35
Technical Limitations . 9-52

ix

How to Get the Best Results . 9-56
Reduce Oranges Step by Step . 9-56
Generic Objectives: A Balance Between Precision and

Analysis Time . 9-56
Options at Launching Time . 9-58
How to Conclude an Orange Review 9-64
Duration of Analysis . 9-68

Applying Coding Rules to Reduce Oranges 9-87
MISRA® Rules Which PolySpace™ Verification Can Help to

Follow . 9-87
Recommended Set of Coding Rules 9-87
Approximations Made by PolySpace™ Verification 9-92

Options Description

10
General . 10-2

Overview . 10-2
-prog Session identifier . 10-2
-date Date . 10-3
-author Author . 10-3
-verif-version Version . 10-3
-voa . 10-4
-keep-all-files . 10-4
-continue-with-red-error . 10-5
-continue-with-existing-host . 10-5
-allow-unsupported-linux . 10-5
-results-dir Results Directory . 10-6
-sources "files" or -sources-list-file file_name 10-7
-I directory . 10-8

Target/Compiler . 10-10
Overview . 10-10
-target TargetProcessorType . 10-10
GENERIC ADVANCED TARGET OPTIONS 10-11
-OS-target OperatingSystemTargetForPolySpaceStubs . . . 10-17
-D compiler-flag . 10-17
-U compiler-flag . 10-18
-include file_name . 10-18

x Contents

-post-preprocessing-command <file_name> or
"command" . 10-19

-post-analysis-command <file_name> or "command" 10-20

Compliance with Standards . 10-22
-dos . 10-22
Embedded Assembler . 10-23
Strictness during analysis launching 10-24
Permissiveness during analysis launching 10-25
MISRA-C 2004 Rules . 10-28
-dialect [iar|keil] . 10-30

PolySpace™ Inner Settings . 10-32
MAIN GENERATOR OPTIONS (-main-generator) for

PolySpace™ Software . 10-32
Stubbing . 10-35
Assumptions . 10-37
Automatic Orange Tester . 10-44
Others . 10-45

Precision/Scaling . 10-47
-quick . 10-47
-O(0-3) . 10-48
-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]] 10-49
-from verification-phase . 10-49
-to verification-phase . 10-50
-context-sensitivity "proc1[,proc2[,...]]" 10-51
-context-sensitivity-auto . 10-51
-path-sensitivity-delta number . 10-52
-retype-pointer . 10-52
-retype-int-pointer . 10-53
-k-limiting number . 10-54
-no-fold . 10-55
-respect-types-in-globals . 10-55
-respect-types-in-fields . 10-56
-inline "proc1[,proc2[,...]]" . 10-57
-lightweight-thread-model . 10-57

MultiTasking (PolySpace™ Server™ for C/C++ Product
Only) . 10-59
-entry-points str1[,str2[,...]] . 10-59
-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]" 10-59

xi

-temporal-exclusions-file file_name 10-60

Batch Options . 10-62
-server server_name_or_ip[:port_number] 10-62
-sources-list-file file_name . 10-62
-v | -version . 10-63
-h[elp] . 10-63

Complete Examples . 10-64
Simple C Example . 10-64
Apache Example . 10-64
cxref Example . 10-65
T31 Example . 10-65
Dishwasher1 Example . 10-65
Satellite Example . 10-66

Static Verification

A
What is Static Verification . A-2

Exhaustiveness . A-4

Glossary

xii Contents

1

PolySpace™ Documentation
Set

About this Guide (p. 1-2) Describes the purpose of this manual

How to Use this Guide (p. 1-3) Describes which sections to read for
specific information

1 PolySpace™ Documentation Set

About this Guide
This document represents all the documentation required to use PolySpace™
tools, irrespective of whether you are a beginner or an experienced user. It
covers both PolySpace™ Client™ for C/C++ and PolySpace™ Server™ for
C/C++ products.

1-2

How to Use this Guide

How to Use this Guide

In this section...

“Analyzing One File” on page 1-3

“Analyzing Code Generated from Simulink® Models” on page 1-4

“Analyzing Multiple Files” on page 1-4

“Detailed Contents” on page 1-4

Analyzing One File
If you are looking to analyze one file:

• Do you want to perform your first analysis and results review?

• Do you want to launch an analysis with a right click?

• Are you applying coding rules?

- Reduce the number of orange checks - step by step

- Apply chosen coding rules

• Is it possible for you to restrict data (functional) ranges in the file?

- Using the Data Range Specification feature (DRS)

- By replacing automatic stubs of functions manually

• Do you have issues with setting up or launching an analysis?

• When reviewing results, is your main concern

- Productivity? Do you wish to focus on productivity by finding bugs
quickly?

- Reliability? Do you want to examine every result PolySpace™
verification provides?

- Or do you want to find a compromise between productivity and
reliability?

• Does your analysis take place:

1-3

1 PolySpace™ Documentation Set

- On a developer’s machine, using the PolySpace™ Client™ for C/C++
product?

- Spooled on a distant server, using the PolySpace™ Server™ for C/C++
product?

Analyzing Code Generated from Simulink® Models
Do you want to Analyze code generated from Simulink® models using the
PolySpace Model Link™ SL or PolySpace Model Link TL products?

Analyzing Multiple Files
If you are looking to analyze multiple packages:

• Do you have issues related to:

- Analysis launching (setup)?

• Common setup issues

• Advanced setup

- Multitasking issues?

- Shared variables?

• Do you want to find bugs efficiently in the results?

• Does your analysis takes place on a server, and do you want access the
queued analysis?

Detailed Contents

• PolySpace Installation. Please refer to the PolySpace Installation Guide
and PolySpace License Installation Guide located on the CD-ROM (in
<CD-ROM>\Docs\Install).

• Chapter 2, “Getting Started” explains how to get started with PolySpace
products. It explains the principles of the tool, describes the installation
procedure, and explains how to use the product with reference to some
simple scenarios.

• Chapter 3, “Analysis Setup” details the features of PolySpace software
which are relevant when preparing to analyze your code. It is a

1-4

How to Use this Guide

comprehensive reference manual for the launching of analyses. It contains
all information related to the launching of an analysis, error messages
at different phases of an analysis, and means at setup-time to reduce ill
founded warnings (oranges).

• Chapter 4, “PolySpace™ Software Day to Day Usage” allows configuring a
project and launches analysis using PolySpace “Tool Bar” and right click in
the “Send To” menu (Only on Windows® systems).

• Chapter 5, “MISRA® Checker” details all the MISRA C® 2004 rules that
help developers achieves MISRA® compliance.

• Chapter 6, “Data Range Specifications” describes the PolySpace DRS, an
easy to use module that helps developers achieves external constraints on
global variables without intrusion.

• Chapter 7, “Using PolySpace™ Model Link Products” describes how to use
the PolySpace Model Link SL and PolySpace Model Link TL products to
analyze code generated from Simulink models.

• Chapter 8, “Results Review” details all features of PolySpace software
which are relevant when reviewing your results. It is a comprehensive
reference document, giving typical examples for each error category,
offering advice on getting started with your first results, advising which
colors to look at, and explaining how to find bugs efficiently.

• Chapter 9, “PolySpace™ Methodological Guide” gives guidance in the use
of PolySpace software as an integral part of the development process. It is
presented as a narrative, and will help proficient users of the tool to get the
best possible use from it. It presents different development processes, and
shows how PolySpace software might best be integrated in each case.

• “Advanced Setup” on page 3-59 includes multitasking information for
PolySpace Verifier, hints and tips for quicker PolySpace Verifier analyses,
and a complete description of those features which are used in order to
launch a PolySpace analysis.

1-5

1 PolySpace™ Documentation Set

1-6

2

Getting Started

General Requirements (p. 2-2) Describes requirements to consider
before beginning the tutorial

PolySpace™ Client — Analyzing a
Single C File (p. 2-5)

Describes how to analyze a single C
file using PolySpace™ Client™ for
C/C++ product

PolySpace™ Viewer — Exploring
Results (p. 2-20)

Describes how to interpret the
results of your analysis

Setting Up and Launching the
MISRA C® Checker (p. 2-50)

Describes how to use the MISRA C®

Checker during an analysis

Launching PolySpace™ Analysis
Remotely (p. 2-62)

Describes how to perform an analysis
remotely using the PolySpace™

Server™ for C/C++ product

Summary (p. 2-71) Provides a summary of the
information presented in this guide.

2 Getting Started

General Requirements

In this section...

“Computer Configuration” on page 2-2

“Timing Information” on page 2-2

“Installation Guide” on page 2-2

“Structure of this Document” on page 2-3

Computer Configuration
Please refer to PolySpace™ Installation Guide for the minimum hardware
requirements.

Timing Information
The installation of PolySpace products takes around 5 minutes (see the
complete installation guide is available from the PolySpace installation
CD-ROM in \Docs\Install\PolySpace_Install_Guide.pdf).

• The first step of this tutorial takes about 15 minutes.

• The second step of this tutorial takes about 15 minutes.

• The third step of this tutorial takes about 5 minutes.

• The fourth step of this tutorial takes about 5 minutes.

Installation Guide

Note If the PolySpace products are already installed on your computer,
please go directly to step 1.

The PolySpace products are delivered on a CD-ROM. There are 4 modules:

1 PolySpace™ Client™ for C/C++ for analyzing single files. Note that this
module is available with the icon “PolySpace Launcher”.

2-2

General Requirements

2 PolySpace™ Server™ for C/C++ for multi-file or composite analysis. Note
that this module is available with the icon “PolySpace Launcher”.

3 PolySpace Viewer is the graphical user interface to explore the results
computed by PolySpace Server for C/C++ or PolySpace Client for C/C++.

4 PolySpace Spooler is the graphical interface to manage analysis done
remotely.

Please refer to PolySpace Installation Guide for installing the PolySpace
products.

Structure of this Document
Once the installation is done, you can launch PolySpace software by using the
following icons that were placed on your desktop:

Moreover, inside PolySpace Client for C/C++ and PolySpace Server for C/C++,
a PolySpace MISRA® Checker is available, allowing at compilation time to
verify some of the rules recommended by the MISRA Consortium (more about
MISRA Consortium at http://www.misra-c.com).

This Getting Started will focus on the following four exercises using the
Client, the Viewer, the PolySpace MISRA Checker and the Server:

2-3

http://www.misra-c.com/

2 Getting Started

• In Step 1: “PolySpace™ Client — Analyzing a Single C File” on page 2-5,
you will analyze a simple file “example.c” by using the PolySpace Client for
C/C++ product.

• In Step 2: “PolySpace™ Viewer — Exploring Results” on page 2-20, you will
review the results obtained during Chapter 2 by using PolySpace Viewer.

• In Step 3: “Setting Up and Launching the MISRA C® Checker” on page
2-50, you will use PolySpace MISRA Checker during the compilation phase
of a PolySpace analysis.

• In Step 4: “Launching PolySpace™ Analysis Remotely” on page 2-62, you
will send an analysis remotely to a PolySpace Server for C/C++ server.

2-4

PolySpace™ Client — Analyzing a Single C File

PolySpace™ Client — Analyzing a Single C File

In this section...

“Overview” on page 2-5

“Analysis Prerequisites” on page 2-5

“Setting Up a PolySpace™ Client™ for C/C++ Analysis” on page 2-6

“PolySpace™ Client™ for C/C++: Running the Analysis” on page 2-12

Overview
This section describes a basic file analysis. It focuses on the analysis of
“example.c”, which is included in the PolySpace™ installation directory and
located at:

<PolySpaceInstallDir>\Examples\Demo_C\sources\example.c.

The PolySpace analysis process is composed of three main phases:

1 First, PolySpace software checks the syntax and semantic of the analyzed
file(s). However, as PolySpace products are not associated to a particular
compiler, benefits of this phase are triple for the analyzed source code:
ANSI® compliance, portability and maintainability.

2 Then, the client seeks the main procedure. If none is found, PolySpace™

Client™ for C/C++ will generate one automatically. By default, this
function will call all public functions of the file.

3 Finally, the client proceeds with the code analysis phase, during which run
time errors are detected and highlighted in the code.

Analysis Prerequisites
Any analysis requires the following:

• PolySpace products and their related license files are correctly installed;

• Source code files (in this case “example.c”) and all header files that it may
directly or indirectly include. For this tutorial we will see later that we need
two header files “math.h” and “include.h” in order to analyze “example.c”.

2-5

2 Getting Started

• All “-D” compilation switches necessary to compile the file are known.
Please note that in this tutorial, no “-D” is necessary to compile “example.c”.

Setting Up a PolySpace™ Client™ for C/C++ Analysis

1 Double-click on the PolySpace Launcher icon (release number could not
be same):

A dialog box window appears proposing to launch one of the following
categories of analysis mixing the type of product and the language:

2 Select Client Launcher, and C, then click OK.

The Graphical Interface of PolySpace analysis Launcher is displayed as
below:

2-6

PolySpace™ Client — Analyzing a Single C File

3 Click on File/New Project to start an analysis:

2-7

2 Getting Started

The PPolySpace Client for C/C++ New Project window opens (see figure
below). It contains four sections:

• At the very top, the title bar, which contains usual icons and menus;

• Top left is the list of files to analyze, along with include and results
directories;

• Top right is the set of options associated with the analysis that will be
processed;

• Finally the bottom area allows following the execution and progress
of the analysis.

2-8

PolySpace™ Client — Analyzing a Single C File

4 Start by updating the result directory name by clicking on the browse

button .

This directory is the one where PolySpace Client for C/C++ product will
store the results of the analysis. By default, the client will store results in
“C:\PolySpace_Results”. This is the directory that we will choose for the
analysis.

2-9

2 Getting Started

5 Now, Click on the button (right of the “New Project” label).

It opens the “Please select a file” window, from which you can select one
or several files to analyze.

6 In the “Look in” section, click on , and select
“<PolySpaceInstallDir>\Examples\Demo_C\sources”. A list of
files appears in the box (<PolySpaceInstallDir> corresponds to
C:\PolySpace\PolySpaceForCandCPP in the figure above).

2-10

PolySpace™ Client — Analyzing a Single C File

7 Select “example.c” and click on in the “Source files [-sources]” section
(bottom left) of the window. The file is now listed among the source files
to be analyzed.

8 Click on OK to go back to the “PolySpace Client for C - New_Project”
window.

Note it is also possible to drag a directory or source files and drop it them
directly in the “File Name/Absolute Path” part (top left of PolySpace Client)
without using the “Please select a file” window.

2-11

2 Getting Started

PolySpace™ Client™ for C/C++: Running the Analysis
To run the analysis:

1 Click on to start the analysis. Alternatively, you can click on
the button in the title bar to run PolySpace Client for C/C++ analysis with
the current setting.

The window titled “Save the project as” opens. You can decide where to
store the configuration information related to the analysis. Here, create
a file called “demo” and save it under PolySpace result directory. The full
name of that file will be “demo.dsk”.

2 Click on to go back to the “PolySpace Desktop for C - New_Project”

window and click again on to proceed.

2-12

PolySpace™ Client — Analyzing a Single C File

A progress report is displayed in the bottom part of the graphical interface,

indicating that the analysis is being performed. The button is
also grayed out.

Note You may press the Stop Execution button - to
interrupt the analysis but it is not part of the current tutorial.

2-13

2 Getting Started

Parsing Errors During Preliminary Analysis Stages
After some checks, the software will show an error message:

Lets try and understand why we get this error message.

First Possible Cause for the Error Message: Hardware
Recommendation. If this happens, please verify whether your computer fits
the minimal hardware configuration requirements described in the general
requirements. Moreover, a message like the following one is displayed in the
bottom part of the graphical interface:

1 Type “host” in the “Search in the log:” box and click on to search if the
error corresponds to a hardware recommendation problem.

If the error message corresponds to the one shown above and in order to
continue analysis, you can either:

• upgrade your computer to meet the minimal requirements, or

2-14

PolySpace™ Client — Analyzing a Single C File

• use the -continue-with-existing-host option which overrides the
initial check for minimal hardware configuration. To do so, please follow
the following steps:

2 To set up the -continue-with-existing-host option, please type
“continue” in the Search internal name from the selected line (top right box).

3 Click .

It will show all options containing “continue” in the set of options part
below:

4 Check the box

2-15

2 Getting Started

in the “Value” column that is associated to the “-continue-with-existing-host”
line as shown below.

It is also recommended to select the -continue-with-red-error option.
Indeed, “example.c” contains - on purpose - code with some definite errors,
later called red errors. This option allows you to continue the analysis even if
red errors are detected in previous passes.

Second Possible Cause for the Error Message: Information About
Header Files. Another cause of error may be that PolySpace Desktop misses
some package specifications.

In the tutorial, as shown above, the file named “math.h” can not be found. To
fix this problem, you need to indicate its location. As PolySpace products
are not associated with one particular compiler, it is mandatory to indicate
where library files are stored.

In our “example.c” file analysis, the related “math.h” file is located in the
same directory as the C file: <PolySpaceInstallDir>\Examples\Demo_C.

1 Open the “Please select a file” window using the button (right of the
“demo.dsk” label in the top right of the interface):

2-16

PolySpace™ Client — Analyzing a Single C File

2 Select “<PolySpaceInstallDir>\Examples\Demo_C\sources””, where
“math.h” is located.

3 Click on in the “Directories to include [-I]” section, then click OK to
close the window.

2-17

2 Getting Started

Note Other header file needed “include.h” is also located in same directory.

It is also possible to drag a directory and drop it directly in the “include
directories [-I]” part (top left of PolySpace Client) without using the “Please
select a file” window.

Progression of the Analysis

1 Click on to restart the analysis. to restart the analysis.

If you previously clicked Execute, some results may have already been
written in the “C:\PolySpace_Results” directory. Therefore a window opens
to check whether you want to overwrite in this directory or not:

2 If this happens, click Yes.

Note Closing the PolySpace Desktop window will not stop the PolySpace

analysis. If you wish to stop it, click (a window of
confirmation follows the click). If the window is closed without stopping the
analysis, it continues in background. Opening again PolySpace Desktop
with the same project automatically updates the analysis with its current
status.

The progress bar allows to follow the progress of the analysis:

2-18

PolySpace™ Client — Analyzing a Single C File

3 To obtain a progress report, click on for the compilation

phase, or for the full analysis in the low level window.

4 Click to get other pieces of information about current
analysis (list of options, stubbed functions, functions used during main
construction, checks found after each phase, etc.).

5 Click the icon to refresh the summary.

End of the Analysis
When the analysis ends, the software proposes to review the results:

If you Click OK, go to the next section of the tutorial to view the results.

If you click Cancel, and no other analyses are running, you can access the

results via the icon in the title bar. , and if no other analyses are running,
you can access the results via the icon in title bar.

2-19

2 Getting Started

PolySpace™ Viewer — Exploring Results

In this section...

“Overview” on page 2-20

“Modes of Operation” on page 2-20

“Download Results into the Viewer” on page 2-22

“Reviewing PolySpace™ Results in “Expert” Mode (“example.c”)” on page
2-24

“Methodological Assistant” on page 2-38

“Report Generation” on page 2-45

Overview
This section illustrates how to explore analysis results that were generated
by either PolySpace™ Client™ for C/C++ or PolySpace™ Server™ for C/C++
products. We review the results of the analysis of “example.c” performed
during step 1: “PolySpace™ Client — Analyzing a Single C File” on page 2-5.

If you clicked OK at the end of the previous analysis (see previous section),
PolySpace™ Viewer automatically opens results.

Modes of Operation
The first time The PolySpace Viewer is opened, a sub-window will appear
after the splash screen of the viewer. It is aimed to warn user about different
modes of operation. User has to choose between launching the Viewer in an
“expert” mode or in an “assistant” mode.

2-20

PolySpace™ Viewer — Exploring Results

The mode will define the reviewing process of checks highlighted during an
analysis:

• Expert mode — The Viewer is opened in a mode where all checks can be
seen. The number, the order and the categories of checks to be reviewed
have to be selected by the user himself (See next section).

• Assistant mode — The reviewing rules for a C analysis results follows a
methodology selected by PolySpace software. It concerns the “best” subset
of checks sorted out for user. The PolySpace Viewer will then guide user
through these selected checks.

For the need of this tutorial, please untick “Do not display this message again”
and then click on “Expert mode”.

2-21

2 Getting Started

Note Even if the user has chosen one mode it is easy in one click to change
the mode inside the PolySpace Viewer.

Download Results into the Viewer
After having clicked on “Expert mode” the PolySpace Viewer window looks
like the figure below:

1 Click File > Open to load result files.

Note If you did not perform the analysis, you can still review the results
by opening the following file:

<PolySpaceInstallDir>\
Examples\Demo_C\RTE_px_O2_Demo_C_LAST_RESULTS.rte

2 Select the following file located in “C:\PolySpace_Results”.

2-22

PolySpace™ Viewer — Exploring Results

3 Click Open to proceed with further steps

Note The RTE_px_O2_Demo_C_LAST_RESULTS.rte is a sort of “link”
on the best analysis in term of precision. This analysis is represented by
RTE_p4_O2_Safety_Analysis_Level4.rte file. Lower level files represent
lower precision analysis.

2-23

2 Getting Started

Reviewing PolySpace™ Results in “Expert” Mode
(“example.c”)
After loading the results, and PolySpace Viewer window looks like below:

• On the left is the Procedural entities view (or RTE view). It displays the
list of packages which have been analyzed or used during the analysis
(specifications).

• In the bottom right area is the source code view with colored instructions.
Each operation checked is displayed using meaningful color scheme and
related diagnostic:

- Red — Errors which occur at every execution.

2-24

PolySpace™ Viewer — Exploring Results

- Orange — Warning - an error may occurs sometimes.

- Grey — Shows unreachable code.

- Green — Error condition that will never occur.

• The two windows just below the tool bar concern details of a currently
reviewed check (when the check has been selected):

• The top right area is used for displaying both control and data flow results.
You can switch from one view to the other by using the “Windows” menu:

Procedural Entities View (RTE View)
Each file and underlying functions in the procedural entities view (or RTE
view) is colorized according to the most critical error found:

• __polyspace_main.c — This file contains the main which was
automatically generated. All checks there are green: no run-time error (or
RTE) has been found.

• example.c — This file is red: one or more definite run-time errors have
been found in it.

• __polyspace_stdstubs.c — contains no checks. It contains stubs of
standard functions part of libclibrary used in example.c.

2-25

2 Getting Started

Click once on the left of “RUNTIME_ERROR” to find out more about this
package.

“RUNTIME_ERROR” is expanded and the list of functions defined within
“RUNTIME_ERROR” is displayed. The functions in red or grey have code
sections that need to be inspected (PROCEDURE_ZDV, SQUARE_ROOT,
etc.) first because they are definite diagnosis of PolySpace verification (either
runtime errors or dead code).

The columns (, , , , and) provide information about run-time
errors found in each function. The following table describes each of these
columns.

2-26

PolySpace™ Viewer — Exploring Results

Column Indicates

Reliability of the code (level of proof).

Number of definite run-time errors or reds.

Number of warnings or oranges (that may hide run-time
errors that do not occur systematically).

Number of safe operations or greens.

Number of unreachable instructions or grey code sections.

Allows marking reviewed checks.

Lets have a look at some errors found by PolySpace verification in “example.c.”

First Example of Runtime Error: Memory Corruption. To investigate
the first error:

1 Click on to expand “Pointer_Arithmetic()“ to find out more about the
red error. It displays a list of red, green, and orange symbols, featuring
the complete list of code areas that PolySpace verification checked within
the “Pointer_Arithmetic()” function.

2-27

2 Getting Started

2 Click on the red “IDP.9” item - which stands for Illegal De-referenced
Pointer -, to precisely locate this error in the source code. The bottom right
section is updated showing the location of the “IDP.9” item.

3 Click on red symbol in the source code at line 104. An error message is
opened:

2-28

PolySpace™ Viewer — Exploring Results

Pointer p is de-referenced outside of its bounds. Indeed, at the line 71 the
instruction “*p = 5;” corrupts the memory as it puts the value “5” outside
of the array “tab” pointed to by the pointer “p”.

Information about this red IDP is also accessible in the right windows
below the toolbar line and the left one gives some statistic about all the
IDP in the analysis:

4 You can also see the calling sequence leading to that particular red code
section. To do so, select “IDP.9” item in the “Procedural entities” column in

the RTE View, and then click on the icon (on the top left of the PolySpace
Viewer window) to display the corresponding run-time error access graph:

2-29

2 Getting Started

Second Example of Runtime Error: Unreachable Code. Select
“Unreachable_Code()” in the RTE View. You can see that “x = x + 1” is
unreachable (gray color on each check) because of the non satisfied boolean
condition: “x” is never negative when evaluating “x<0”. PolySpace verification
has detected some dead code.

2-30

PolySpace™ Viewer — Exploring Results

Colors in the Source Code View
Each operation checked is also displayed using meaningful color scheme and
related diagnostic in the source code view as links:

• Red — A link to the error message associated to the error which occurs at
every execution.

• Orange — A link to an unproven message - an error may occur sometimes.

• Grey — A link to a check shown as unreachable code. The error message is
in grey.

• Green — A link to a VOA (Value on Assignment) or an error condition
that will never occur.

• Black — Represents some comments, source code that does not contain
any operation to be checked by PolySpace verification in terms of run time
errors and optimized operations, e.g. x := 0;.

2-31

2 Getting Started

• Blue — Text highlighting the keyword “procedure” and “function”

• Blue Underlined — A link to a global variable in the “Global variable
View”.

More Examples of Run-Time Errors
Unlike most other testing techniques, PolySpace verification provides the
benefit of finding the exact location of run-time errors in the source code.
Below are some examples that you can review with PolySpace Viewer.

In a First Example of the Second Set: Arithmetic Error. Click to
expand “SQUARE_ROOT” function. You can see the source code view in the
bottom right.

You can also display the call tree for that function by using the “Windows”
menu (see previous paragraph).

“Square_Root()” is called by RTE function from “example.c”. It is displayed as
”example.RTE” in the “Call tree view” window (right of the top right section).

“Square_Root” calls “random_float“ (automatically stubbed function),
“Square_Root_conv” (from example.c) and “sqrt” (standard library).

2-32

PolySpace™ Viewer — Exploring Results

The green sections into the source code view are error-free but the red (sqrt)
is an issue that needs to be fixed. Indeed, when the local float variable gamma
is computed in the line “gamma=sqrt(beta - 0.75);“, the operation will cause a
run-time error, as the parameter passed to “sqrt” is always negative.

Note Using -voa option at launching time, PolySpace software can help more
suitably by giving information of range on scalar assignment

Second Example of the Second Set: Non-Infinite Loop. Select
“Non_Infinite_Loop()” in the “Procedural entities” column in RTE View. The
function is fully green: it means that the locale variable x never overflows,
even if the exit condition of loop deals with y that is smaller than x. PolySpace
verification confirms that the function always terminates.

2-33

2 Getting Started

Third Example of the Second Set: Non-Infinite Loop. Select
“Recursion_caller()”: The first call to Recursion is in red because when a
negative parameter is passed, Recursion makes a division by zero (See the
“Recursion” function). PolySpace verification also checks recursive constructs:

2-34

PolySpace™ Viewer — Exploring Results

Advanced Results Exploration
You can filter the information provided by PolySpace software to focus on the
type of errors you wish to investigate.

2-35

2 Getting Started

There are pre-defined composite filters (, and that you can
choose depending on your development process. Theses filters are accessible
through a combo list:

To illustrate the use of these filters, we will focus on the Square Root function
that we have examined in the previous section.

Gamma Mode. Gamma mode provides all the “red” and “grey” code sections.
It is mainly used during the earliest development stages to focus quickly
on critical bugs.

To select Gamma mode, click the button.

The software reduces the information checks related to “SQUARE_ROOT”.

This list of acronyms - for type of operations checked - shows what PolySpace
verification automatically analyzed for you.

Beta Mode. Beta mode highlights checks that could cause a processor halt,
memory corruptions or overflows. Beta mode is the default mode.

To select Beta mode:

1 Click .

2-36

PolySpace™ Viewer — Exploring Results

2 Select “Pointer_Arithmetic()” in the “Procedural entities”.

3 Click to get the list of the checks.

Alpha Mode. Alpha Mode provides a comprehensive list of operations
checked by PolySpace verification.

To switch to Alpha mode, click

.

You may also want to use filters to focus on particular categories of errors.
Those filters are located at the top of the PolySpace Viewer window:

Note When the mouse pointer moves on the filter, a tool tips gives its
definition.

• Click (top of the window) to suppress all checks, then click .

2-37

2 Getting Started

You will get list of checks containing only IDP (Illegal Dereference
Pointers) reds, oranges or greens:

• Click (top of the window) to suppress green code sections.

You will get a reduced list of checks reds, oranges and grays:

Miscellaneous

The icon gives access to the PolySpace documentation. All views have a
pop-up menu (right click on mouse).

Close the PolySpace Viewer window by clicking on the upper right symbol
(PolySpace Viewer can also be closed using File > Close).

Methodological Assistant
After a first navigation into the PolySpace Viewer, some simple questions
remain:

• Do all checks need to be reviewed?

• What are the checks to review?

• How many?

• What is the best order?

2-38

PolySpace™ Viewer — Exploring Results

The Methodological assistant is here to answer to all theses questions: It
helps to select and manage the checks to be reviewed. It selects a “best” subset
and sorts out them. The Assistant mode in the PolySpace Viewer will then
guide through these selected checks.

To open the assistant:

1 If the PolySpace Viewer is still open, close it by clicking on the upper right
symbol.

2 Open the PolySpace Viewer again, then load the same results.

3 Choose “Assistant” mode.

After having loaded the results in “Assistant” mode, PolySpace Viewer
window looks like below:

2-39

2 Getting Started

Assistant Dashboard
The second line of buttons on the toolbar and the two views just below are the
navigation centre based on the methodological method used in the assistant
mode:

2-40

PolySpace™ Viewer — Exploring Results

Some other changes can be seen in the viewer:

• Now, in the “Procedural Entities” view the list of files analyzed is sorted by
the methodological assistant used.

• In the bottom right area is the source code view with colored instructions.
Each operation will be checked and sorted by the methodological method
using meaningful color scheme and related diagnostic and in the following
order:

- Red — Assistant browses all errors which occur at every execution.

- Gray — Assistant browses each block of unreachable code depending if
radio button “Skip gray checks” has been ticked or not.

- Orange — Assistant chooses and reviews the “best” unproven operations
-errors that may occur sometimes.

1 Click to navigate to next check.

The PolySpace Viewer has been refreshed with the first check selected by
the Methodology of review:

2-41

2 Getting Started

The Methodological dashboard gives details and allows reviewing the
check. On the selected check, it is possible to mark the fact that it has
been reviewed.

2 Select the radio button box.

3 Enter a comment in the associated edit box on the right.

After, it looks like:

2-42

PolySpace™ Viewer — Exploring Results

The left part of the dashboard has been updated, and displays some statistics
in three lines:

• The first line gives the number and percentage of remaining checks to
review of the current category. In the previous example, it concerns red
IDP checks.

• The second line gives values in the color category (red, grey and unproven).

• The Last line gives in permanence the Software reliability indicator.

Other buttons in the Methodological dash board allow navigating to previous
check, coming back to current one

and going to next

/ previous

category of reviewed checks selected by the Methodology.

2-43

2 Getting Started

Choose a Methodological Assistant

and associated levels
have been pre-selected by PolySpace software.

The methodology allows selecting the categories of checks to review, the
number for each category and their order depending of a statistical algorithm.

The level (or criterion) defines the number of checks to review by category.
Explicit name have been associated to each criterion like “Fresh code”, “Unit
test” and “Code review”

It is possible to refine a self-created one or define its own Methodology.

1 Select Edit > Preferences in the PolySpace Viewer.

2 Select the Assistant Configuration tab.

2-44

PolySpace™ Viewer — Exploring Results

3 Create a new configuration set

Define the categories of check to review for each criterion, how many in
each one.

Note You cannot change an existing configuration except by duplication
and refinement.

Report Generation
When PolySpace software performs an analysis, it generates textual
files that can be used to generate Excel® reports. These files are located
in the results directory (See ”C:\PolySpace_Results\PolySpace-Doc“ or
“<PolySpaceInstallDir>\Examples\Demo_C\PolySpace-Doc”).

All views (except source code) are printable and can be exported to textual or
Excel format (protected by license).

2-45

2 Getting Started

The ”C:\PolySpace_Results\PolySpace-Doc“ directory should contain the
following files:

To generate a report:

1 Open the file called “PolySpace_Macros.xls”, enable macros when asked
and then the following window opens:

2-46

PolySpace™ Viewer — Exploring Results

2 Click on .

2-47

2 Getting Started

A file browser opens.

3 Select the file called “New_Project_RTE_View.txt”.

After a few seconds, an Excel file is generated. It contains several
spreadsheets related to the application analyzed.

For example, in “Checks Synthesis” all statistics about checks and colors
are reported in a summary table.

2-48

PolySpace™ Viewer — Exploring Results

This ends ways of results review.

2-49

2 Getting Started

Setting Up and Launching the MISRA C® Checker

In this section...

“Before You Begin” on page 2-50

“Selecting MISRA C® Rules to Check” on page 2-52

“Running the MISRA® Checker” on page 2-59

Before You Begin

• “Overview” on page 2-50

• “Activating the MISRA C® Checker” on page 2-50

Overview
This section describes the basic steps to add the MISRA C® Checker in
the analysis of “example.c”. This operation takes place during ANSI® C
compliance phase of the analysis.

Activating the MISRA C® Checker
The project created during first step of this guide needs to be updated by
activating the “Check MISRA rules” option while selecting the parameters.

Note If the PolySpace™ Client™ for C/C++ product is already opened with
the project defined previously (refer to “Setting Up a PolySpace™ Client™ for
C/C++ Analysis” on page 2-6), you can skip the first two steps.

1 If the PolySpace Client for C/C++ window has been closed, please open it
again by double-clicking on the Client icon:

2-50

Setting Up and Launching the MISRA C® Checker

2 Select the saved project:

3 To set up the -misra2 options, type “misra” in the Search internal name

from the selected line
(top right) box, then click .

The software shows all options containing “misra” in the set of options
part below.

4 Select the Check MISRA-C: 2004 rules option and expand it to see the
two associated options -misra2 and -includes-to-ignore:

We will detail theses two options below.

5 Make sure “example.c” is selected (location from
<PolySpaceInstallDir>\Examples\Demo_C\sources):

6 Update the results directory:

2-51

2 Getting Started

The PolySpace™ Launcher should now look like this:

Selecting MISRA C® Rules to Check

• “File Configuration” on page 2-53

• “Discard Header Files from MISRA® Checking” on page 2-58

2-52

Setting Up and Launching the MISRA C® Checker

File Configuration

1 Click on to invoke “Rules configuration.”

Note This button was enabled during activation of “Check MISRA-C:
2004 rules.”

2 Click to create a new MISRA C configuration file.

2-53

2 Getting Started

The previous window is updated.

3 Set each rule as follows:

• Error — this MISRA C rule must be respected. If one or several errors
are detected, the analysis will stop at the end of the compilation phase.

• Warning — if this MISRA-C rule is not respected, a warning will be
displayed, but the analysis will continue.

2-54

Setting Up and Launching the MISRA C® Checker

• Off — the MISRA-C rule will not be verified by PolySpace MISRA®

Checker module

Note The default setting for all rules is Warning.

4 For the MISRA-C check of “example.c” file, please update the setting to

Off for all rules and apply it using the button

5 Click on to expand the set of rules 16. - “Functions”.

The status of some of the underlying rules cannot be modified (rules 16.7
and 16.10), others are “Off”.

6 Click on the Error column for rule 16.3.

The green dot moves from column Off to column Error. This
means that PolySpace MISRA Checker will verify whether the rule
16.3 (“Identifiers shall be given for all of the parameters in a function
prototype”) is respected and will stop after the ANSI compliance checking
phase if this is not the case.

2-55

2 Getting Started

7 Click on to expand the set of rules 17- “Pointers and arrays,” then select
Warning for rule 17.4.

2-56

Setting Up and Launching the MISRA C® Checker

This means that PolySpace MISRA Checker will verify whether the rule
17.4 (“Array indexing shall be the only allowed form of pointer arithmetic”)
is respected and display a warning message if this is not the case.

8 Click .

2-57

2 Getting Started

A “Save As ” window opens, enabling to save the current configuration.

9 Type misrarules.txt in the C:\MISRA_results directory.

Discard Header Files from MISRA® Checking
You can disable MISRA verification on predefined files. For example, you may
want to disable the MISRA C verification of math.h, included in example.c.

To discard header files:

1 Click next to the -includes-to-ignore option.

The “Files and directories to ignore” window opens, enabling to disable the
verification of MISRA-C rules on selected files and directories.

2 Select “math.h” using the browse button, then click to close
the window.

This file will not be checked.

This ends the setting up of the MISRA-C checking phase.

2-58

Setting Up and Launching the MISRA C® Checker

Running the MISRA® Checker

1 Before starting this analysis of “example.c” with MISRA C checker, Select
“File>Save as new project” and choose another name for the current
PolySpace project.

2 Click to start the analysis.

During the new analysis performed on “example.c”, a new filter button is

displayed - - in the log view. This button enables the user to
filter out messages associated to the MISRA-C Checker.

At the end of the compilation process, PolySpace Desktop shows the
following error message:

2-59

2 Getting Started

3 Click .

The analysis has been interrupted, because the MISRA-C checker found
that rule 16.3, marked as “Error”, has not been respected. A list of
MISRA-C errors and warning messages appears in the bottom window.

4 If we focus on the MISRA log using appropriate filter , only
messages associated to MISRA-C checker are displayed.

Also, the “Search in log” box permits to navigate into log file searching for
an appropriate key word: a particular rule for instance.

Verifying C files ...

Verifying example.c

Verifying sources ...

Verifying example.c

/sources/include.h:34 : MISRA-C ERROR : rule 16.3 (required) violated.

| Identifiers shall be given for all of the parameters in a function

prototype declaration.

example.c:97 : MISRA-C WARNING : rule 17.4 (required) violated.

| Array indexing shall be the only allowed form of pointer arithmetic.

example.c:113 : MISRA-C WARNING : rule 17.4 (required) violated.

| Array indexing shall be the only allowed form of pointer arithmetic.

example.c:117 : MISRA-C WARNING : rule 17.4 (required) violated.

| Array indexing shall be the only allowed form of pointer arithmetic.

example.c:121 : MISRA-C WARNING : rule 17.4 (required) violated.

| Array indexing shall be the only allowed form of pointer arithmetic.

5 Here, the recommendation is clear — an identifier is missing in a function
prototype and must be added in “include.h” as required by MISRA-C rule
16.3. Once this is done, you can re-launch the analysis.

2-60

Setting Up and Launching the MISRA C® Checker

Note You can also change the setting on rule 16.3 from “Error” to
“Warning”, and launch the analysis again. The error message will change
to “MISRA-C WARNING”, and the analysis will not stop after the ANSI
checking phase.

6 When no error remains after the ANSI checking phase, the analysis
continues as described in step 1, and will give results as described in step 2.

Note A log file, located at the root of the “C:\PolySpace_Misra_Results”
directory with “.log” as suffix, contains all messages displayed in the bottom
window, including MISRA C messages. The format of the log file name is the
following: “PolySpace_4_2_X_Y_<Name-Project>_<date>_<time>.log”.

2-61

2 Getting Started

Launching PolySpace™ Analysis Remotely

In this section...

“Overview” on page 2-62

“Launching an Analysis” on page 2-62

“Management of PolySpace™ Analysis in Remote: the PolySpace™ Spooler”
on page 2-64

“Batch Commands” on page 2-67

“Sharing Analyses Between Accounts” on page 2-69

Overview
This section describes the basic steps to launch an analysis in remote.

To do so you need:

• A Queue Manager server (QM) installed.

• Your desktop PC configured with the PolySpace™ Client™ for C/C++
product.

• A networked machine configured with the PolySpace™ Server™ for C/C++
product.

Please see the PolySpace™ Installation Guide (available on the PolySpace
CD-ROM in \Docs\Install) to install and configure a Client and a Server.

Note Launching an analysis remotely requires a PolySpace Server for C/C++
product and associated license.

Launching an Analysis
To launch an analysis remotely:

1 Set up an analysis as described in “PolySpace™ Client — Analyzing a
Single C File” on page 2-5, but do not launch it.

2-62

Launching PolySpace™ Analysis Remotely

2 Select the Remote analysis checkbox (see next figure).

3 Click to launch the analysis.

The analysis starts and the compilation phase is performed on the desktop
PC. At the end of the “C source verification phase” the analysis is sent to
the Queue Manager server.

4 Click on the Full Log tab. You will have a message like this:

2-63

2 Getting Started

The analysis has been queued with an ID number, and you can follow its
progression using the PolySpace Spooler.

Note If you do not select the “Remote analysis” radio button, the analysis
continues locally.

Management of PolySpace™ Analysis in Remote: the
PolySpace™ Spooler
You can check the analysis processes in the queue using the PolySpace Spooler.

To manage an analysis in the queue:

1 Open the PolySpace Spooler by either:

• Clicking on the short cut on your desktop PC

• Clicking on the icon

in the menu tab of the launcher.

The PolySpace Spooler appears.

2-64

Launching PolySpace™ Analysis Remotely

2 Right-click on an analysis to manage it in the queue:

3 Select one of the following options:

• Follow progress — This action lists the associated log file in a Launcher
window. If the analysis is running, you can follow the update of the log
file and associated progress bar in real time on the Launcher window.

• View log file — This action lists the associated log file in a “Command
prompt” window, in which you can the last 100 updated lines of the
log file in real time. This option is only available when the analysis
is running.

• Download results — This action downloads the results of an analysis
onto the client. If the analysis is still running, available results are

2-65

2 Getting Started

downloaded on the client, without disturbing the analysis. The option is
not possible for a “queued” analysis

• Move down in queue — This action reduces the priority of a “queued”
analysis.

• Kill and download results — This action stops the analysis
definitively and the results are downloaded. The status of the analysis
changes from “running” to “aborted”. The analysis remains on the queue.

• Kill and remove from queue — This action stops the analysis
definitively, and the analysis is removed from the queue.

Note The results will be lost

• Remove from queue — This action removes a “queued”, “aborted“
ora “completed” analysis.

Note The results will be lost

You can also manage the queue from an administrator point of view using
the Operations menu:

• Select Operations > Purge queue, to purge the entire queue or purge
only completed and aborted analysis (see next figure).

2-66

Launching PolySpace™ Analysis Remotely

Note The queue manager password is required.

• Select Operations > Change root password, to change the administrator
password of the queue manager or the default one.

Note By default the password is “administrator”.

Batch Commands

• “Launching an Analysis in Batch” on page 2-67

• “Managing an Analysis in Batch” on page 2-68

Launching an Analysis in Batch
A set of commands allow the launching of analysis in batch.

All theses commands begin with the following prefixes:

• Server analysis —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-c

• Client analysis —polyspace-remote-desktop-c

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-c -server
[<hostname>:[<port>] | auto] allows you to send a C client analysis
remotely.

Note If your PolySpace server is running on Windows®, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-c.exe

2-67

2 Getting Started

Managing an Analysis in Batch
In batch, a set of commands allow the management of analysis in the queue.

On UNIX® platforms, all theses command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

• psqueue-download <id> <results dir> — download an identified
analysis into a results directory.

- [-f] force download (without interactivity)

- -admin -p <password> allows administrator to download results.

- [-server <name>[:port]] selects a specific Queue Manager.

- [-v|version] gives release number.

• psqueue-kill <id> — kill an identified analysis.

• psqueue-purge all|ended — remove all or finished analyses in the queue.

• psqueue-dump — gives the list of all analyses in the queue associated to
default Queue Manager.

• psqueue-move-down <id> — move down an identified analysis in the
Queue.

• psqueue-remove <id> — remove an identified analysis in the queue.

• psqueue-get-qm-server — give the name of the default Queue Manager.

• psqueue-progress <id>: give progression of the currently identified and
running analysis.

- [-open-launcher] display the log in the graphical user interface of
launcher.

- [-full] give full log file.

- psqueue-set-password <password> <new password> — change
administrator password.

• psqueue-check-config — check the configuration of Queue Manager.

- [-check-licenses] check for licenses only.

2-68

Launching PolySpace™ Analysis Remotely

• psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs directory).

- [-list-versions] give the list of available release to upgrade.

- [-install-version <version number> [-install-dir
<directory>]] [-silent] allow to install an upgrade in a given
directory and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

Sharing Analyses Between Accounts

• “Analysis-key.text File” on page 2-69

• “Magic Key or Shared Analysis Between Projects” on page 2-70

Analysis-key.text File
From a security point of view, all analysis spooled on a same Queue Manager
are owned by the user who sent the analysis from a specific account. Each
analysis has a unique cryptic key.

The public part of the key is stored in a file analysis-keys.txt associated to
a user account. This file is located in:

• UNIX — /home/<username>/.PolySpace

• Windows — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of the ASCII file is the following (spaces are tabulation):

<id of launching> <server name of IP address> <public key>

where <public key> is a value in the range [0..F]

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786

2-69

2 Getting Started

2 m120 2860F820320CDD8317C51E4455E3D1A48DCE576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

When we make an attempt of management (download, kill and remove, etc.)
on a particular analysis, the Queue Manager will examine this file and find
the associated public key to authenticate the analysis on the server.

If the key does not exist, an error message appears: “key for analysis <ID>
not found”. So sharing an analysis with another user account necessitates
the public key.

Sharing an analysis is quite simple, ask to the owner of the analysis the line
in analysis-key.txt which containing the associated <ID> and put it the line
in your own file. After, it will be able to download the analysis.

Magic Key or Shared Analysis Between Projects
A magic key allows sharing analyses without taking into account the <ID>.
It allows same key for all analysis launched by a user account. The format
is the following:

0 <Server id> <your hexadecimal value>

All analyses spooled will have this key instead of random one. In the same
way, if this kind of key is available in an analysis-key.txt file of another
user, it allows to authorize any operation on any analyses pushed with this
key.

Note It only works for all analysis launched after having put the magic
key in the file. If the analysis has been launched before, the allowed key
associated to the ID will be used for the authentication.

2-70

Summary

Summary
After having followed each steps of this tutorial, you are now able to launch
an analysis using the PolySpace™ Client™ for C/C++ product, enabling or
not the MISRA® Checker phase, and explore some results with PolySpace™
Viewer. All theses command can be performed locally on your desktop PC or
in Client/Server architecture.

You will find more information on advanced options available with our tools in
the following chapters.

2-71

2 Getting Started

2-72

3

Analysis Setup

Compile Errors (p. 3-2) Describes how to use PolySpace™
verification to detect compile errors

Link Messages (p. 3-32) Provides examples of link errors

Stubbing Errors (p. 3-40) Describes how to use PolySpace to
detect stubbing errors

Intermediate Language Errors
(p. 3-57)

Describes the log file containing
error messages

Advanced Setup (p. 3-59) Describes how to prepare your code
to streamline orange checks

3 Analysis Setup

Compile Errors

In this section...

“Overview” on page 3-2

“Messages” on page 3-2

“Compiling Operating System Dependent Code (OS-target issues)” on page
3-6

“Target Specific Issues” on page 3-9

“Assembly Code” on page 3-23

“Dealing with Backward “goto” Statements” on page 3-29

Overview
PolySpace™ software may be used instead of your chosen compiler to make
syntactical, semantic and other static checks. These errors will be detected
during the standard compliance checking stage, which takes about the same
amount of time to run as a compiler. The use of PolySpace software this early
in development yields a number of benefits:

• detection of link errors, plus errors which are only apparent with reference
to two or more files;

• objective, automatic and early control of development work (perhaps to
avoid errors prior to checking code into a configuration management
system).

Messages
Some examples of compilation errors are detailed below:

• “Syntax error” on page 3-3

• “Undeclared identifier” on page 3-3

• “No such file or directory” on page 3-4

• “Compilation errors with key words: @interrupt, @address(0xABCDEF)”
on page 3-4

3-2

Compile Errors

Syntax error

Log File Code Used

Verifying compilation.c
compilation.c:3: syntax error; found
`x' expecting `;'
compilation.c:3: undeclared identifier
`x'

void main(void)
{
int far x;
x = 0;
x++;
}

The “far” keyword is unknown in ANSI® C. At “compilation” time, it therefore
causes confusion - should it be a variable, or maybe a qualifier? The
construction “int far x;” is illegal without any further information, and hence
it is a syntax error. Here are some possible corrections:

• Remove far from the source code;

• Define far as a qualifier such as const or volatile;

• Remove far artificially by specifying a compilation flag like: “-D far= “
(with a space after the equal sign).

Note If you need to specify -D compilation flags which are generic to the
project, then using the -include option may be the most efficient solution.
Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Undeclared identifier

Log File Code Used

compilation.c:3: undeclared identifier
`x'

void main(void)
{
x = 0;
x++;
}

Should x be a float, an int or a char? The type is unknown, and therefore
the compilation stops.

3-3

3 Analysis Setup

Sometimes variables are implicitly defined by certain cross compilers. They
need to be declared before analysis begins, as PolySpace software has no
knowledge about implicit variables.

Similarly “__SP” can be a interpreted as a reference to the stack pointer by
some compilers, which may be dealt with by using the -D compilation flag..

Note If you need to specify -D compilation flags which are generic to the
project, then using the -include option may be the most efficient solution.
Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

No such file or directory

Log File Code Used

compilation.c:1: one_file.h: No such
file or directory

#include "one_file.h"

compilation.c:1: catastrophic error:
could not open source file "one_file.h"

#include "one_file.h"

The file called “one_file.h” is missing. The include directory holding this file
must be made known to PolySpace. Refer to the -I option in the launcher.

These files are essential for PolySpace to complete the compilation. They
will be used:

• for data coherency;

• for automatic stubbing.

Compilation errors with key words: @interrupt,
@address(0xABCDEF)
You might have the same error message as for a regular compilation error,
as discussed previously when using some non ANSI keyword containing
for example @ as first character. But in this case, the problem cannot be
addressed by means of a compilation flag, nor a -include file - that is, the
“gather compilation options.”

3-4

Compile Errors

In this case, you need to use the post-preprocessing command.

1 Create a file called ABC.txt, and save it under c:\PolySpace

2 Open it with an ASCII editor, and copy and paste the following text

#!/bin/sh
sed "s/titi/toto/g" |
sed "s/@interrupt//g"

3 In the launcher, specify the absolute path and file name in the
-post-preprocessing-command field using browse button on a Windows
system.

Note In Linux, you must:

• enter the full path, such as /home/poly/working_dir/ABC.txt, and

• make sure this file has execution permissions by typing: chmod 755
ABC.txt.

Launch an analysis on the example “my_file.cpp” below, and confirm that the
compilation phase generates no errors.

void main(void)
{
@interrupt // will be removed by the command

int titi; // will be replaced by int toto

int r=0; r++; toto++;
}

To confirm that the right transformation has been performed, open
the expanded file “my_file.ci” which is located in the directory
“<results_folder>/C-ALL/my_file.ci”

3-5

3 Analysis Setup

Compiling Operating System Dependent Code
(OS-target issues)

• “List of already predefined compilation flags” on page 3-6

• “My target application runs on a Linux® OS” on page 3-8

• “My target application runs on Solaris™” on page 3-8

• “My target application runs on Vxworks” on page 3-8

• “My target application runs neither on Linux®, vxworks nor Solaris™”
on page 3-9

List of already predefined compilation flags
Theses flags concern predefined OS-target: no-predefined-OS, linux, vxworks,
Solaris and visual (-OS-target option).

OS-target Compilation flags —include file and content

no-predefined-OS -D__STDC__

visual -D__STDC__ -include
<product_dir>/cinclude/pst-visual.h

vxworks -D__STDC__
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__STDC__
-D__GNUC__=2
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

-include
<product_dir>/cinclude/pst-vxworks.h

3-6

Compile Errors

OS-target Compilation flags —include file and content

linux -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__ELF__
-Dunix
-D__unix
-D__unix__
-Dlinux
-D__linux
-D__linux__
-Di386
-D__i386
-D__i386__
-Di686
-D__i686
-D__i686__
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

<product_dir>/cinclude/pst-linux.h

Solaris -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

No -include file mentionned

3-7

3 Analysis Setup

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

• Setting the same -D flags manually, or

• Using the -include option on a copied and modified pst-OS-target.h file

My target application runs on a Linux® OS
The minimum set of options is as follows:

polyspace-c \
-OS-target Linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-linux/next \
...

where the PolySpace product has been installed in the directory
/usr/local/PolySpace/CURRENT-VERSION.

My target application runs on Solaris™
If PolySpace software runs on a Linux® machine:

polyspace-c \
-OS-target Solaris \
-I /your_path_to_solaris_include

If PolySpace runs on a Solaris™ machine:

polyspace-c \
-OS-target Solaris \
-I /usr/include

My target application runs on Vxworks
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \

3-8

Compile Errors

-OS-target vxworks \
-I /your_path_to/Vxworks_include_directories

My target application runs neither on Linux®, vxworks nor
Solaris™
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \
-OS-target no-predefined-OS \
-I /your_path_to/MyTarget_include_directories

Target Specific Issues

• “Target Specification (size of char, int, float, double...)” on page 3-9

• “Generic/Custom Target” on page 3-11

• “Address Alignment” on page 3-12

• “”KEIL” and “IAR” Dialects” on page 3-13

• “Keywords to Automatically Ignore or Replace, Before Compilation” on
page 3-20

Target Specification (size of char, int, float, double...)
The type of CPU to be used at run time determines various characteristics
of data representation such as data sizes, addressing, etc. These factors
determine whether some types of error (such as overflows) will occur or not.

Consequently, PolySpace must take the type of CPU used in the target
environment into account.

PolySpace supports some of the most commonly used processors as listed in
the table below. Even if the processor used in a target environment is not
explicitly mentioned, it is safe to specify one from the table which shares the
characteristics listed.

3-9

3 Analysis Setup

Note The targets Motorola ST7, ST9, Hitachi H8/300, H8/300L, Hitachi
H8/300H, H8S, H8C, H8/Tiny are described in the next section.

Target char short int long long
long

float double long
double

ptr char is Endian ptr diff
type

sparc 8 16 32 32 64 32 64 128 32 signed Big int, long

i386 8 16 32 32 64 32 64 96 32 signed Little int, long

c-167 8 16 16 32 32 32 64 64 16 signed Little int

m68k /
ColdFire1

8 16 32 32 64 32 64 96 32 signed Big int, long

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big int, long

tms320c3x 32 32 32 32 64 32 32 402 32 signed Little int, long

sharc21x61 32 32 32 32 64 32 323 64 32 signed Little int, long

NEC-V850 8 16 32 32 32 32 32 64 32 signed Little int

hc08 4 8 16 16 32 32 32 32 32 16
5

unsigned Big int

hc12 3 8 16 16 32 32 32 32 32 32
4

signed Big int

mpc5xx
(#3)

8 16 32 32 64 32 32 32 32 signed Big int, long

If none of the characteristics described above match, please contact PolySpace
Technical Support for advice.

1. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

2. All operations on long double values will be imprecise (that is, shown as orange).

3. On this target, a double may be 32 or 64 bits long. Only 32 bits double are supported.

4. Non ANSI C specified key-words and compiler implementation-dependent pragmasand
interrupt facilities are not tokens into account by this support

5. all kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

3-10

Compile Errors

Note The following table describes target processors that are not fully
supported by PolySpace, but for which an analysis is possible. In the cases
listed below, the target processor mentioned in the “Nearest Processor”
column can be selected as a near equivalent. Where the characteristics are
not identical between the target processor and its near equivalent, it is
highlighted in red below. These mismatches need to be taken into account
during results review.

Target char short int long long
long

float double long
double

ptr char
is

ptr diff
type

Nearest
target
processor

tms470rlx 8 16 32 32 N/A 32 64 646 32 signed int, long i386

tms320c2x 16 16 16 32 N/A 32 32 32 16 signed int Unsupported

Generic/Custom Target
The size of some basic types is configurable (-int-is-32bits option, compiler
memory model option, near/far pointer syntax)

The alignment of some basic types with arrays and structures is configurable
(depending on the compiler implementation or optimization options). For
example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is
strictly determined by the size of the individual data objects (without fields
and end padding).

The sign of char is configurable using -default-sign-of-char [signed|unsigned]

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big

alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

6. All operations on long double values will be imprecise (that is, shown as orange).

3-11

3 Analysis Setup

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big

alignment 8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big

alignment 8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/
32

32 64 32 64 64 32 unsigned Big

alignment 8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

Address Alignment
PolySpace handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard
which guarantee that:

• that global sizeof and offsetof fields are optimum (i.e. as short as possible);

• the alignment of all addressable units is respected;

3-12

Compile Errors

• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size7

• So in the example, char “a” begins at offset 0 and its size is 8 bits. int “b”
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently int “b” begins at
offset=32. The size of the struct “foo” before global alignment is therefore
64 bits.

• The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

• In the example, global_alignment = max (alignment char a, alignment int
b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global_alignment (32), so sizeof is not adjusted.

”KEIL” and “IAR” Dialects
In the typical embedded control application, reading and writing port data,
setting timer registers and reading input captures etc. are commonplace. To
cope with this without recourse to assembler, some compilers associated to
micro processor have specified special data types like sfrand sbit. Typical
declarations are:

sfr A0 0x80
sfr A1 0x81
sfr ADCUP 0xDE
sbit EI 0x9F

and so on. These declarations reside in header files such as regxx.hfor the
basic 80Cxxx micro processor. The definition of sfr in these header files
customizes the compiler to the target processor.

7. except in the cases of “double” and “long” on some targets.

3-13

3 Analysis Setup

When accessing a register or a port, using sfr data is then a simple matter but
not part of standard ANSI C:

{
ADCUP = 0x08; /* Write data to register */
A1 = 0xFF; /* Write data to Port */
status = P0; /* Read data from Port */
EI = 1; /* Set a bit (enable all interrupts) */
}

Analyzing previous code with PolySpace is possible using the -dialect option.
This option allows the Keil or IAR C language extensions to be supported even
if some structures, keyword and syntax are not ANSI standard. The following
tables summarize what is supported when analyzing a code which has been
considered as associated to a dialect keilor iar.

The following table summarizes the keil C language extensions to be
supported:

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

bit x = 0, y = 1,
z = 2;

assert(x == 0);
assert(y == 1);
assert(z == 1);
assert(sizeof(bit)
== sizeof(int));

pointers to bits and
arrays of bits are
not allowed

3-14

Compile Errors

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Type sfr • The -sfr-types option
defines unsigned
types name and size
in bits.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0
sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect
keil sfr
-types sfr=8,
sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also
be declared as extern
bit in an another file.

sfr x = 0xF0;
sbit x1 = x ^ 1; // 1st bit of x
sbit x2 = 0xF0 ^ 2; // 2nd bit of x
sbit x3 = 0xF3; // 3rd bit of x
sbit y0 = t[3] ^ 1;

/* file1.c */
sbit x = P0 ^ 1;
/* file2.c */
extern bit x;
x = 1; // set the 1st bit of P0 to 1

3-15

3 Analysis Setup

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0
int x @ 0xFE ;
static const
int y @ 0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

A warnings in the
log file is displayed
when an interrupt
function has been
found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void foo1 (void)
interrupt XX = YY
using 99 { }
void foo2 (void) _
task_ 99 _priority_
2 { }

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant.Defining -D __C51__, keywords large code, data, xdata, pdata
and xhuge are ignored.

The following table summarize the dialect iar:

3-16

Compile Errors

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

• If initialized with
values 0 or 1, a
variable of type bit
is a simple variable
(like a c++ bool).

• A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr
type)

bit y1 = s.y.z.2;
bit x4 = x . 4;
bit x5 = 0xF0 . 5;
y1 = 1; // 2nd bit
of s.y.z is

set to 1

pointers to bits and
arrays of bits are
not allowed

Type sfr • The -sfr-types option
defines unsigned
types name and size.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

3-17

3 Analysis Setup

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

int x[3], y;
x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0
int x @ 0xFE ;
static const
int y @ 0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
funcname"

interrupt [XX]
using [99] void
foo1 (void) { }
monitor [YY] foo2
(void) { }

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm, bdata,
idata, pdata, code, data, xdata, xhuge, interrupt, __interrupt
and __intrinsic

3-18

Compile Errors

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Unnamed
struct/union

• Fields of
unions/structs with
no tag and no name
can be accessed
without naming their
parent struct.

• Option
-allow-unnamed-fields
need to be used to
allow anonymous
struct fields.

• On a conflict
between a field of
an anonymous struct
with other identifiers
:

- with a variable
name, field name
is hidden

- with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

- with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“
is displayed in the
log file.

union { int x; };
union { int y; struct { int
z; }; } @ 0xF0;

3-19

3 Analysis Setup

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;
no_init union
{ int y; } @ 0xFE;

#pragma no_init
has no effect

Associated option –sfr-types, for keil or iar dialect, defines the size of a sfr
type. The syntax for an sfr element in the list is type-name=typesize. For
example –sfr-types sfr=8,sfr16=16 define two sfr types: sfr with a 8 bit size
and sfr16 with a 16-bits size. A value type-name must be given only once and
8, 16 and 32 are the only available values for type-size. Note that as soon as
a sfr type is used in the code, you must specify its name and size, even if
it is the keyword sfr.

Note Many IAR and Keil compilers associated to specific targets currently
exist. It is difficult to maintain a complete list of those supported.

Keywords to Automatically Ignore or Replace, Before
Compilation
If you want to ignore non-compliant key words such as “far” or 0x
followed by an absolute address, you can use the template described below
to deal with them. Save it under c:\PolySpace\myTpl.pl, and select
myTpl.plin the PolySpace Launcher using browse button associated to
-post-preprocessing-command.

Content of the myTpl.pl file.

#!/usr/bin/perl

##

3-20

Compile Errors

Post Processing template script
Copyright 1999-2005 PolySpace Technologies.
#
##
Usage from Launcher GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl
3) Windows: /usr/bin/perl PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ 0xFE1" address constructs
s/\@\s0x[A-F0-9]*//g;

Remove "@0xFE1" address constructs
s/\@0x[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

3-21

3 Analysis Setup

Perl Regular Expression Summary.

###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses

3-22

Compile Errors

\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

Assembly Code
Ignoring assembly code by using the option “-discard-asm” can deal with
many instances of assembly code within a C application, but it is not always
a valid route to take.

Ignored assembly instructions (they can be ignored manually or by option)
will change the behavior of the code. For example, a write access to a shared
variable can be written in assembly code. If this write access is ignored, the
analysis may produce inaccurate results. In such cases, please refer to the
“Manual vs. Automatic Stubbing” on page 3-49, which applies to functions
as well as to stubbed instructions.

PolySpace is designed for C code only. In most cases, the option -discard-asm
combined with -asm-begin and -asm-end can be used to instruct PolySpace
to discard a number of assembly code constructs:

All statements are ignored: the rest of the function remains
unchanged
Discarding assembly code by using the -discard-asm is an acceptable
approach where ignoring the assembly instructions will have no impact on
the remainder of the function.

Also refer to the “Manual versus automatic stubbing”

int f(void)
{
asm ("% reg val; mtmsr val;");
asm("\tmove.w #$2700,sr");

3-23

3 Analysis Setup

asm("\ttrap #7");
asm(" stw r11,0(r3) ");
assert (1); // is green
return 1;

}

int other_ignored6(void)
{
#define A_MACRO(bus_controller_mode) \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop")
assert (1); // is green
A_MACRO(x);
assert (1); // is green
return 1;

}

int pragma_ignored(void)
{
#pragma asm
SRST

#pragma endasm
assert (1); // is green

}

int other_ignored2(void)
{
asm "% reg val; mtmsr val;";
asm mtmsr val;
assert (1); // is green
asm ("px = pm(0,%2); \
%0 = px1; \
%1 = px2;"
: "=d" (data_16), "=d" (data_32)
: "y" ((UI_32 pm *)ram_address):

"px");

3-24

Compile Errors

assert (1); // is green
}

int other_ignored1(void)
{
__asm
{MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8}

assert (1); // is green
}

int GNUC_include (void)
{
extern int __P (char *__pattern, int __flags,
int (*__errfunc) (char *, int),
unsigned *__pglob) __asm__ ("glob64");
__asm__ ("rorw $8, %w0" \
: "=r" (__v) \
: "0" ((guint16) (val)));

__asm__ ("st g14,%0" : "=m" (*(AP)));
__asm("" \
: "=r" (__t.c) \
: "0" ((((union { int i, j; } *) (AP))++)->i));

assert (1); // is green
return (int) 3 __asm__("% reg val");

}

int other_ignored3(void)
{
__asm {ldab 0xffff,0;trapdis;};

__asm {ldab 0xffff,1;trapdis;};
assert (1); // is green
__asm__ ("% reg val");
__asm__ ("mtmsr val");
assert (1); // is green
return 2;

}

3-25

3 Analysis Setup

int other_ignored4(void)
{
asm {
port_in: /* byte = port_in(port); */
mov EAX, 0
mov EDX, 4[ESP]
in AL, DX
ret
port_out: /* port_out(byte,port); */

mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret }

assert (1); // is green
}

Following example is automatically stubbed
You must use the -discard-asm option.

PolySpace detects that no body is defined, and automatically creates a stub.

asm int m(int tt);

Also refer to the “Manual versus Automatic stubbing” section

All following examples have an empty body
The user must use the -discard-asm option.

#pragma inline_asm(ex1, ex2)

#pragma inline_asm(ex1, ex2)
int ex1(void)
{
% reg val;
mtmsr val;
return 3;

};
int ex2(void)

3-26

Compile Errors

{
% reg val;
mtmsr val;
assert (1); // is dead code because the whole body is empty
return 3;

};

#pragma inline_asm(ex3)

#pragma inline_asm(ex3)
int ex3(void)
{
% reg val;
mtmsr val;
return 3;

};

Compiler specific implementation: an empty body is provided

asm int l(int tt){}

Compiler specific implementation: all statements in the function body are
ignored.

asm
int h(int tt)
{
% reg val; // is ignored
mtmsr val; // is ignored
return 3; // is ignored

};

Also refer to “Stubbing” on page 3-48.

#asm and #endasm support
The use of #asm and #endasm allows fragments of (typically) assembly code
to be disregarded by PolySpace, irrespective of whether the -discard-asm
option is used.

Consider the following example.

3-27

3 Analysis Setup

void test(void)
{
#asm
mov _as:pe, reg
jre _nop

#endasm
int r;
r=0;
r++;

}

Explanation

By default, the usage of #asm and #endasm requires the usage of the
-asm-begin and -asm-end options in the following way. The syntax to use this
facility when launching PolySpace in batch mode is:

polyspace-c -asm-begin asm -asm-end endasm

What to do if -discard-asm failes parsing an asm code section
There will be occasions when the -discard-asm option does not deal with a
particular assembly code construction, particularly when the code fragment is
compiler specific (Note that you could also consider using the -asm-begin and
-asm-end options instead of the following approach).

Consider the example.

1 int x=12;
2
3 void f(void)
4 {
5 #pragma will_be_ignored
6 x =0;
7 x= 1/x; // no colour is even displayed
8 // not even C code
9 #pragma was_ignored
10 x++;
11 x=15;
12 }
13

3-28

Compile Errors

14 void main (void)
15 {
16 int y;
17 f();
18 y = 1/x + 1 / (x-15); // x is equal to 15
19
20 }

As shown in the example above, any text or code placed between the two
#pragma statements is ignored by PolySpace. This allows any unsupported
construction to be ignored by PolySpace without changing the meaning of the
original code. The options to enable this feature are accessible through the
Graphical Interface PolySpace Launcher or in batch mode:

polyspace-c -asm-begin will_be_ignored -asm-end was_ignored

Dealing with Backward “goto” Statements
PolySpace is not designed to deal with backward “goto” statements, but
MACROS provide a solution in most cases. In general, the analysis of C code
which includes (a) backward “goto” statement(s) will stop at an early stage,
and a message will appear saying that backward “goto” statements are not
allowed by PolySpace.

Macros provided by PolySpace will work around this limitation as long as
the “goto” labels and jump instructions are in the same code block
(and in the same scope). To insert these macros into the code:

• Edit the C file containing the “goto” statements;

• Add #include pstgoto.h" at the beginning of the file (located in
<PolySpaceInstallDir>/cinclude);

• Go to the the beginning of the block containing the “goto” statements;

• Just after the variable declarations (local to the block), insert the
USE_1_GOTO(<tag>) macro call;

• Just before the end of this same block, insert the EXIT_1_GOTO(<tag>)
macro call (taking care with the closing bracket "}");

• Finally, replace "goto <tag>" with "GOTO(<tag>)".

3-29

3 Analysis Setup

The following example would cause an analysis to terminate:

{
/* local variable declarations */
int x; ...
/* Instructions */
...
label1:
...
goto label1
...
}

And this could be dealt with in the following way:

/* the pstgoto.h file is provided by PolySpace and its path */
{
/* local variable declarations */
int x; ...
USE_1_GOTO(label1);
/* Instructions */
...
label1:
...
GOTO(label1);
...
EXIT_1_GOTO(label1);
}

The code block concerned may contain many different uses of backward “goto”
statements. The use of USE_n_GOTO() and matching EXIT_n_GOTO()
statements will deal with this (that is, using USE_2_GOTO(),
USE_3_GOTO() etc). Note that pstgoto.h need to be copied from
<PolySpaceInstallDir>/cinclude directory and location added in the list of -I.

The code block may also use several different tags and/or multiple “tag”
parameters can be used to deal with these situations. So in the generic case,
use:

USE_n_GOTO (<tag 1>, <tag 2>, ..., <tag n>);
EXIT_n_GOTO(<tag 1>, <tag 2>, ..., <tag n>);

3-30

Compile Errors

Consider the following example:

Original Code Modified Code for Analysis

{
.

Reset:
.

{

{
if (X)
goto Reset;

}

{
if (Y)
goto Reset;

}
}

{
USE_1_GOTO(Reset);

Reset:

{

{
if (X)
GOTO(Reset);

}

{
if (Y)
GOTO(Reset);

}
}
EXIT_1_GOTO(Reset);

3-31

3 Analysis Setup

Link Messages

In this section...

“Overview” on page 3-32

“Function: Wrong Argument Type” on page 3-32

“Function: Wrong Argument Number” on page 3-33

“Variable: Wrong Type” on page 3-34

“Variable: Signed/Unsigned” on page 3-34

“Variable: Different Qualifier” on page 3-35

“Variable: Array Against Variable” on page 3-36

“Variable: Wrong Array Size” on page 3-36

“Missing Required Prototype for varargs” on page 3-37

“Can an Application without “main” be Analyzed? (For non Client mode
only)” on page 3-38

Overview
This section gives some examples of link errors.

Note Looking at the pre-processed code can help to find errors faster.
They are located in the <<results directory>>/C-ALL/ or <<results
directory>>/ALL/SRC/MACROS. These files have a .ci extension.

Function: Wrong Argument Type
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition

declared function type has 'arg 1' type incompatible with definition

declared 'pointer' (32) type incompatible with defined 'float' (32) type

3-32

Link Messages

PolySpace Output:

int f(float y)
{
int r;
r=12;

}

int f(int *y);

void main(void)
{
int r;
r = f(&r);

}

Here, the first parameter for the “f” function is either a float or a pointer to an integer - but
either way, the global declaration must match the definition. The error is explained in the
textual output generated by PolySpace during the linking phase.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Function: Wrong Argument Number
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition

declared function type has incompatible args. number with definition

int f(int y, int z)
{
int r;
r=12;

}

int f(int y);

void main(void)
{
int r;
r = f(r);

}

These two functions haven’t the same number of arguments, which would result in non
determinism during execution. The error is explained in the textual output generated by
PolySpace during the linking phase.

3-33

3 Analysis Setup

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Variable: Wrong Type
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x; int x;
void main(void)
{}

The“x” variable must be declared in the same way in every file. If a variable x is as an integer
equal to 1, which is 0x0001, what does this value mean when seen as a float? It could result
in a NAN (Not A Number) during execution.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Variable: Signed/Unsigned
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'unsigned' type incompatible with defined 'signed' type

3-34

Link Messages

PolySpace Output:

extern unsigned char x; char x;
void main(void)
{}

Consider the 8 bit binary value 10000010. Given that a char is coded in 8 bits, it is not clear
how this should be considered in the code snippet shown; maybe 130 (unsigned), maybe -126
(signed). PolySpace highlights the ambiguity.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Variable: Different Qualifier
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition

declared 'non qualified' type incompatible with defined 'volatile' type

'volatile' qualifier used

extern int x; volatile int x;

void main(void)
{}

The qualifier taken into account by PolySpace is the one with the most onerous implications for
the analysis. However, there is doubt regarding which statement is correct, and so PolySpace
generates a warning.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

3-35

3 Analysis Setup

Variable: Array Against Variable
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

void main(void)
{

}

The real allocated size for the x variable is one integer. Any function attempting to manipulate
x[] would corrupt the memory. PolySpace textual output highlights this error.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Variable: Wrong Array Size
PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared array type has 'upper bound' 12 out of range 5

3-36

Link Messages

PolySpace Output:

extern int x[12]; int x[5];

void main(void)
{

}

The real allocated size for the x variable is five integers. Any function attempting to manipulate
x[] between x[5] and x[11] will in fact corrupt the memory. PolySpace textual output highlights
this error.

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Missing Required Prototype for varargs
PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...);

void f(void)
{
g(12, abcde ,40);
}

void main(void)
{
g(4);
}

The prototype for “g” must also be declared when the main is used.

To get rid of this error without modifying the main (by adding the line “void g(int, …)”), you
can include that line in a new file called (say) generic_for_example.h and then use the option
–include “c:\PolySpace\generic_for_example.h” when your analysis is launched.

3-37

3 Analysis Setup

Can an Application without “main” be Analyzed?
(For non Client mode only)
This section only concerns PolySpace Server for C. PolySpace Client for C will
automatically generate a main if needed.

When your application is a function library (API) or a single module, you
will have to provide a main that calls each function because of the execution
model that is used by PolySpace. This manual technique is recommended in
preference to the automated approach adopted by Client, because it allows a
much more accurate model of the calling sequence to be generated.

There are three steps involved in manually defining the main.

• Identify the API functions and extract their declaration;

• Create a main to contain the declaration of a volatile variable for each type
that is mentioned in the function prototypes;

• Create a loop with a volatile end condition. Inside this loop, create a
switch block with a volatile condition and, for each API function, create a
case branch that calls the function using the volatile variable parameters
created previously.

Alternatively, refer to the “main generator” option section to automatically
generate a main.

Consider the following example. Suppose that the API functions are:

int func1(void *ptr, int x);
void func2(int x, int y);

The main to be created manually is as follows:

void main()
{
volatile int random; /* We need an integer variable as a function
parameter */
volatile void * volatile ptr; /* We need a void pointer as a function
parameter */
while (random) {
switch (random) {

3-38

Link Messages

case 1:
random = func1(ptr, random); break; /* One API function call */

default:
func2(random, random); /* Another API function call */

}
}

3-39

3 Analysis Setup

Stubbing Errors

In this section...

“Errors when Compiling _polyspace_stdstubs.c” on page 3-40

“Errors when Creating Automatic Stubs” on page 3-45

“How to Gather Compilations Options Efficiently” on page 3-47

“Stubbing” on page 3-48

Errors when Compiling _polyspace_stdstubs.c

• “Standard Error Messages” on page 3-40

• “Troubleshooting” on page 3-42

Standard Error Messages
There may be occasions when a code set compiles on a target but when that
same code is analyzed with PolySpace, an error message is generated during
the compilation phase for __polyspace_stdstubs.c .

Examples of such error messages follow. They highlight conflicts between a
standard library function which is included as part of the application, and one
of the standard stubs which is used by PolySpace in place of that function.

Stubbing standard library functions ...

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file
or directory

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:1118: syntax error; found
`strlen' expecting `;’

C-STUBS/__polyspace__stdstubs.c:1120: syntax error; found `i'
expecting `;'

3-40

Stubbing Errors

C-STUBS/__polyspace__stdstubs.c:1120: undeclared identifier `i'

Stubbing standard library functions ...

Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure
'sprintf'.

Stubbing standard library functions ...

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace__stdstubs.c:3027: syntax error; found `n'
expecting `)'

C-STUBS/__polyspace__stdstubs.c:3027: skipping `n'

C-STUBS/__polyspace__stdstubs.c:3037: undeclared identifier `n'

The code uses standard library functions such as sprintf and strcpy and the
examples above suggests problems with such functions.

Such problems can best be addressed by restarting the analysis including the
header file containing the prototype and the required definitions, as used
during compilation on the target. The least invasive way of doing so would
be to use the -I option.

Failing that, a selection of files is provided which contains stubs for most
standard library functions which can be used instead of having them
automatically stubbed.

For this to work effectively, it is important for you to include the correct
include file for the function. In the following example, the standard library
function is strlen. This assumes that string.h has been included. Because
the target string.h file may be differ between targets there are no default
include directories for PolySpace.

3-41

3 Analysis Setup

So, if the compiler has implicit include files, they must be specified by hand in
the verification script, as illustrated in the following example.

(__polyspace_stdstubs.c is located in <<results_dir>>/C-ALL/C-STUBS)

__polyspace__stdstubs.c
#if defined(__polyspace_strlen) || ... || defined(__polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t i=0;
while (s[i] != 0)
i++;

return i;
}
#endif /* __polyspace_strlen */

If problems remain, refer to the solutions below.

Troubleshooting
There may be occasions where restarting the analysis including the missing
header file(s) using the -I option will not solve the problem. There are 3
potential solutions:

• “Where precision is important and preparation time is not a problem” on
page 3-42

• “Where preparation time is short or problems remain after trying solution
1 ” on page 3-43

• “Where all other attempts have failed” on page 3-44

Where precision is important and preparation time is not a problem.

1 Copy <<results_dir>>/C-ALL/C-STUBS/ __polyspace_stdstubs.c to
the source directory and rename it polyspace_stubs.c.

2 This file contains the whole list of stubbed functions, user functions and
standard library functions. For example:

#define __polyspace_strlen

3-42

Stubbing Errors

#define a_user_function

3 Find the problem function in the file.

#if defined(__polyspace_strlen) || ... || defined(__polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t i=0;
while (s[i] != 0)
i++;

return i;
}

#endif /* __polyspace_strlen */

This is the stubbed definition for the function causing the problem, and
hence the analysis requires the applications own string.h include file.

4 EITHER extract the relevant part of that file for inclusion in the analysis.

For example, for strlen:-

string.h
// put it in the /homemade_include directory
typedef int size_t;
size_t strlen(const char *s);

OR, preferably, provide the string.h file that contains the real prototype
and type definitions for the stubbed function.

5 Specify the path for the include files and re-launch PolySpace:

polyspace-c -I /homemade_include

or

polyspace-c -I /our_target_include_path

Where preparation time is short or problems remain after trying
solution 1 .

1 Identify the function name causing the problem (sprintf, say);

3-43

3 Analysis Setup

2 If no prototype for this function can be found, provide a .c file containing
the prototype for this function;

3 Restart the analysis by using a -D option (-D __polyspace_no_sprintf, say)

Other __polyspace_no_function_name options can be found in
__polyspace__stdstubs.c files, such as

__polyspace_no_vprintf
__polyspace_no_vsprintf
__polyspace_no_fprintf
__polyspace_no_fscanf
__polyspace_no_printf
__polyspace_no_scanf
__polyspace_no_sprintf
__polyspace_no_sscanf
__polyspace_no_fgetc
__polyspace_no_fgets
__polyspace_no_fputc
__polyspace_no_fputs
__polyspace_no_getc

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilations Options Efficiently” on page 3-47.

Where all other attempts have failed. To ignore __polyspace_stdstubs.c
but still see which standard library functions are in use:

1 Deactivate all standard stubs using the option -D
POLYSPACE_NO_STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_NO_STANDARD_STUBS

or

Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_STANDARD_STUBS. For example:

3-44

Stubbing Errors

polyspace-c -D POLYSPACE_STRICT_ANSI_STANDARD_STUBS

This will present a list of functions PolySpace tries to stub, as well as the
standard functions in use (most probably without any prototype). You will
have the following type of message:

* Function strcpy may write to its arguments and may
return parts of them. Does not model pointer effects.
Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype

2 Add a “proper” include file in the C file that uses your standard library
function. If PolySpace is restarted with the same options, the default
behavior for these stubs for this particular function will result.

Consider the example size_t strcpy(char *s, const char *i)

• Stubbed to write anything in *s

• Stubbed to return any possible size_t.

Note If the problem remains after trying all 3 solutions, contact PolySpace
support.

Errors when Creating Automatic Stubs
There are three different types of error messages which may be generated
during the automatic creation of stubs.

Error 1

PolySpace output
Fatal error: function 'f' refers to a function pointer either
much too complex or in a too-complex data-structure, or with
unknown parameters.
It cannot be stubbed automatically.

Consider a prototype f which contains a function pointer as a parameter.

3-45

3 Analysis Setup

If the function pointer prototype only contains scalars and/or floats
then “f” will be stubbed automatically.

For example, the following function will be stubbed automatically:

int f(
void (*ptr_ok)(int, char, float),
other_type1 other_param1);

If this function pointer prototype also contains pointers, the use will
get the error message and will have to stub the “f” function manually

For example, the following function will need to be stubbed manually by
default (unless the -permissive-stubber option is used):

int f(
void (*ptr_ok)(int *, char, float),
other_type1 other_param1);

Error 2

PolySpace output
Fatal error: function 'f' has unknown prototype

Error message explanation:
- "function has wrong prototype" means that either the function
has no prototype or its prototype is not ANSI compliant.

- "task is undefined" means that a function has been declared
to be a task but has no known body

For any function to be automatically stubbed, PolySpace needs the prototype.

Error 3

PolySpace output
*** Verifier found an error in parameter -entry-points: task "w"
must be a userdef function
--- ---
--- ---
--- Found some errors in launching command. ---

3-46

Stubbing Errors

--- Please consult rte-kernel -h to correct them ---
--- and launch the analysis again. ---
--- ---

No function or procedure declared to be an -entry-point can be an
automatically stubbed function.

How to Gather Compilations Options Efficiently
The code is often tuned for the target (as discussed to “”KEIL” and
“IAR” Dialects” on page 3-13). Rather than applying minor changes to the
code, create a single polyspace.h file which will contain all target specific
functions and options. The -include option can then be used to force the
inclusion of the polyspace.h file in all source files under analysis.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

• The position of the error will be identified more precisely.

• There will be no need to modify original source files.

Indirect benefits:

• The file is automatically included as the very first file in all original .c files.

• The file can contain much more powerful macro definitions than simple
-D options.

• The file is reusable for other projects developed under the same
environment.

3-47

3 Analysis Setup

Example

This is an example of a file that can be used with the —include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler
#include stdio.h
#include another_file.h

// Generic definitions, reusable from one project to another
#define far
#define at(x)

// A prototype may be positioned here to aid in the solution of
a link phase conflict between
// declaration and definition. Doing so will allow the detection of the
// same error at compilation time instead of at link time. Leads to
// - earlier detection
// - precise localisation of conflict at compilation time
void f(int);

// The same also applies to variables.
extern int x;
// Standard library stubs can be avoided,
// and OS standard prototypes redefined.
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

Stubbing

• “Manual vs. Automatic Stubbing” on page 3-49

• “The Stubbing Options PURE and WORST” on page 3-51

• “The Default and Alternative Behavior for Stubbing” on page 3-52

• “Function Pointer Cases” on page 3-53

• “Stubbing Functions with a Variable Argument Number” on page 3-54

• “Finding Bugs in _polyspace_stdstubs.c” on page 3-55

3-48

Stubbing Errors

Manual vs. Automatic Stubbing
The adopted approach to stubbing can have a significant influence on the
speed and precision of your analysis, and there are occasions when automatic
stubbing will not provide an adequate representation of the code it represents
-with regards to both missing functions and assembly instructions.

Example

void main(void)
{
a=1;
b=0;
a_missing_function(&a, b);
b = 1 / a;

}

By relying on Verifiers default stub, the division is shown with an orange
warning because a is assumed to be anywhere in the full permissible integer
range (including 0). If the function was commented out, then the division
would be a green "/ ". A red "/ " could only be achieved with a manual stub.

Deciding which stub functions to provide. In the following paragraph,
procedure_to_stub can represent either procedure or a sequence of assembly
instructions which would be automatically stubbed in the absence of a manual
stub. (Please refer to “Assembly Code” on page 3-23).

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

Consider procedure_to_stub, If it represents:

• A timing constraint (such as a timer set/reset, a task activation, a delay, or a
counter of ticks between two precise locations in the code) then you can stub
it to an empty action (void procedure(void)). PolySpace needs no concept of
timing since it takes into account all possible scheduling and interleaving of
concurrent execution. There is therefore no need to stub functions that set
or reset a timer. Simply declare the variable representing time as volatile.

3-49

3 Analysis Setup

• An I/O access: maybe to a hardware port, a sensor, a read/write of a file,
a read of an EEPROM, or a write to a volatile variable.There is no need
to stub a write access. If you wish to do so, simply stub a write access to
an empty action (void procedure(void)). Stub read accesses to "read all
possible values (volatile)".

• A write to a global variable. In this case, you may need to consider which
procedures or functions write to it and why. Do not stub the concerned
procedure_to_stub if:

- The variable is volatile;

- The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub by hand if

- The variable is a regular variable read by other procedures or functions.

- A read from a global variable: If you want PolySpace to detect that it is a
shared variable, you need to stub a read access. This is easily achieved
by copying the value into a local variable.

In general, follow the Data Flow and remember that:

• PolySpace only cares about the C code which is provided;

• PolySpace need not be informed of timing constraints because all possible
sequencing is taken into account;

• You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example. The following example shows a header for a missing function
(which might occur, for example, if the code is a subset of a project.) The
missing function copies the value of the src parameter to dest so there would
be a division by zero - a runtime error - at run time.

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a, b);
b = 1 / a;

}

3-50

Stubbing Errors

By relying on Verifiers default stub, the division is shown with an orange
warning because a is assumed to be anywhere in the full permissible integer
range (including 0). If the function was commented out, then the division
would be a green "/ ". A red "/ " could only be achieved with a manual stub.

Default Stubbing Manual Stubbing Function ignored

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// orange division
}

void a_missing_function
(int *x, int y;)
{ *x = y; }

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// red division

void a_missing_function
(int *x, int y;)
{ }

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// green division

By relying on Verifiers default stub, the assembly code is ignored and the
division " /" is green. The red division "/" could only be achieved with a
manual stub.

Summary. Stub manually: to gain precision by restricting return values
generated by automatic stubs; to deal with a function which writes to global
variables.

Stub automatically in the knowledge that no run time error will be ever
introduced by automatic stubbing; to minimize preparation time.

The Stubbing Options PURE and WORST
External functions are assumed to have no effect (read, write) on global
variables. Every external function for which these assumptions are not valid
will need to be explicitly stubbed.

Stubbing has an effect on analysis duration (“Reducing Analysis Time” on
page 9-70) and precision.

3-51

3 Analysis Setup

Consider the example int f(char *);. In the analysis of this function there are
three automatic stubbing approaches which may be considered, aside from
manual stubbing.

Using this
approach

pragma
POLYSPACE_WORST

pragma
POLYSPACE_PURE

Default automatic
stubbing

...implies
the
assumption
of this
worst case
scenario in
the stub

int f(char *x)
{
strcpy(x, "the quick
brown fox, etc.");
return &(x[2]);

}

int f(char *x)
{
return strlen(x);

}

int f(char *x)
{
*x = rand();
return 0;

}

and then
there is
manual
stubbing
to consider.

If the function being modelled by the stub is not accurately represented by any of
these approaches to automatic stubbing, then manual stubbing will yield more
precise results.

The Default and Alternative Behavior for Stubbing

Initial Prototype With pragma
POLYSPACE_PURE

With pragma
POLYSPACE_WORST

PolySpace default
automatic stubbing

void f1(void);
{do nothing]

int f2
(int u);

Returns [-2^31,
2^31-1]

int f3
(int *u);

Returns [-2^31,
2^31-1]

Returns [-2^31,
2^31-1] and assumes
the ability to write into
(int *) u Assumes the ability to

write into *u to any
depth and returns
[-2^31, 2^31-1]

3-52

Stubbing Errors

Initial Prototype With pragma
POLYSPACE_PURE

With pragma
POLYSPACE_WORST

PolySpace default
automatic stubbing

int* f4
(int u);

Returns an absolute
address (AA)

Returns AA or (int *)
u and assumes the
ability to write into
(int *) u

Returns an absolute
address (refer to
“Understanding
Addressing” on page
8-35)

int* f5
(int *u);

Returns an absolute
address

Returns [-2^31,
2^31-1] and assumes
the ability to write into
*u, to any depth

Assumes the ability to
write into *u, to any
depth and returns an
absolute address

void f6
(void (*ptr)(int),

param2)

The function pointed to by ptr will be called
with a full-range random value for the integer.
Rules for param2 are as above.

void f7
(void (*ptr)(

param2)

Does nothing

Unless the option –permissive-stubber, is used,
this function is not stubbed. The parameter
(int *) associated with the function pointer is
too complicated for PolySpace to stub it, and
PolySpace stops. You must stub this function
manually.

Note If (*ptr) contains a pointer as a
parameter, it won’t be stubbed automatically
and with –permissive-stubber , the function
pointer ptr is called with random as a parameter.

Function Pointer Cases

Function Prototype Comments

int f(
void (*ptr_ok)(int, char, float),
other_type1 other_param1);

The -permissive-stubber option is not required.

3-53

3 Analysis Setup

Function Prototype Comments

int f(
void (*ptr_ok)(int *, char, float),
other_type1 other_param1);

The -permissive-stubber option is required
because of the “int *” parameter of the function
pointer passed as an argument

void _reg(int);
int _seq(void *);

unsigned char bar(void){
return 0;

}

void main(void){
unsigned char x=0;
_reg(_seq(bar));

}

Both functions “_reg” and “_seq” are
automatically stubbed, but the call to the “bar”
function is not exercised by the PolySpace
software.

The function that is a parameter is only called
in stubbed functions if the stubbed function
prototype contains a function pointer as
parameter.

Since here that is a “void *”, its not a function
pointer

Stubbing Functions with a Variable Argument Number
PolySpace is capable of stubbing most vararg functions. Nevertheless,

• This can generate imprecision in pointer analysis;

• It causes a significant increase in complexity and hence in analysis time.

There are two possible ways to deal with this.

• stub manually, or

• put a #pragma POLYSPACE_PURE "function_1" on every varargs function
that you know to be pure. This can reduce the complexity of pointer
analysis tenfold.

Consider the following example.

Place this kind of line in any .c or .h file of the analysis:

#ifdef POLYSPACE
#define example_of_function(format, args...)

3-54

Stubbing Errors

#else
void example_of_function(char * format, ...)

#endif
void main(void)
{
int i = 3;
example_of_function("test1 %d", i);

}

polyspace-c -D POLYSPACE

Finding Bugs in _polyspace_stdstubs.c
By doing a selective review of oranges, the user can sometimes find bugs
located in the __polyspace__stdstubs.c file. As for other oranges in the code,
some are useless, others highlight real problems. How can we isolate the
useful ones?

There are a number of practical ways to make it easy for the user to detect
the useful oranges:

• Create the file using approaches with are sympathetic to PolySpace needs.
This will yield up to 90% less useless oranges. For instance,

• Use functions that return random values instead of local volatile variables;

• Initialise char variables with a random char instead of a volatile int in
order to reduce the number of overflow checks;

• Define an "APPLY_CONSTRAINT()" macro. Such a function will always
create an orange check but it will be easy to filter.

• By checking oranges manually in the __polyspace__stdstubs.c file: many
comments have been added to explain where an orange is expected and why.

Collectively, these features turn the chore of separating out the useful orange
warnings into a fast and painless activity.

The user should start by reading IDP checks.

Example. The orange check in fgets() is one such check.

3-55

3 Analysis Setup

for (i=0; i < length; i++) /* write in s up to n-1 char */
s[i] = _polyspace_random_char();
^

IDP

This orange check is definitely a significant one. It means that Verifier could
not conclude that the buffer which is given as an argument to fgets() is always
big enough to contain the specified character count. So, the severity of the
problem highlighted depends on how the function is called in the application.

The check shouldn’t generally be orange unless it is highlighting a real
issue (unless fgets() is called very frequently. In that case, try using the
context-sensitivity or -inline options).

3-56

Intermediate Language Errors

Intermediate Language Errors
The analysis log can sometimes indicate that a red error has been detected
in the previous phase, and that the analysis has therefore stopped. If no
graphical result is provided, the errors and their locations are listed at the
end of the log file. To find them, you can scroll through the analysis log file
starting at the end and working backwards.

Note This example only explains where to find the error list. Their meaning
and the error messages themselves are detailed in the next section.

The log file may be similar to this one:

***** C to intermediate language translation 13.29 (P_SENUP) took
0.000773real, 0.000773u + 0.0s

--
1 User Program Errors:
* certain failure of correctness condition [non-initialized variable]
"&" file intermediate.c line 5 column 0
Please correct the program and restart the verifier.
--
***** C to intermediate language translation 13.30 (IL Partition)
0 empty package(s) removed
***** C to intermediate language translation 13.30 (IL Partition)
took 0.002252real, 0.002252u + 0.0s
**** C to intermediate language translation 13 (P_IL) took
1.069168real, 1.069168u + 0.0s
0 empty package(s) removed
**** C to intermediate language translation 14 (P_IPF)
96% init procedures removed
**** C to intermediate language translation 14 (P_IPF) took
0.002401real, 0.002401u + 0.0s
* terminating ../il-sources/a0.ads
* terminating ../il-sources/a0.adb
**** C to intermediate language translation 15 (P_TW)
**** C to intermediate language translation 15 (P_TW) took
0.003055real, 0.003055u + 0.0s

3-57

3 Analysis Setup

* assigns: 100% reduction
* asserts: 100% reduction
* total : 54% reduction
User time for command `iabc-c2if -input-file': 17 seconds on host
paris12

**

*** C to intermediate language translation done

**
Ending at: Oct 31, 2002 14:29:26
Certain (red) errors detected during previous phase.
You must correct them before continuing.

3-58

Advanced Setup

Advanced Setup

In this section...

“Variables — Declaration and Definition” on page 3-59

“Types Promotion” on page 3-60

“Code Preparation for Variables” on page 3-63

“Code Preparation for Built-in Functions” on page 3-69

“My Code is Multitasking” on page 3-69

Variables — Declaration and Definition
The definition and declaration of a variable are two discrete but related
operations which are frequently confused.

Declaration

• for a function, the prototype : int f(void);

• for an external variable : extern int x;

A declaration provides information about the type of the function or variable.
If the function or variable is used in a file where it has not been declared, a
compilation error will result.

Definition

• for a function : the body of the function has been written : int f(void) {
return 0; }

• for a variable : a part of memory has been reserved for the variable : int
x; or extern int x=0;

When a variable is not defined, the -allow-undef-variable is required to start
the analysis. Where that option is used, PolySpace will consider the variable
to be initialized, and to potentially take any value in its full range (see “How
are variables initialized?” on page 3-68).

When a function is not defined, it is stubbed automatically.

3-59

3 Analysis Setup

Types Promotion

• “An Example of an Unsigned Promoted to Signed” on page 3-60

• “What are the Promotions Rules in Operators?” on page 3-61

• “Example” on page 3-61

An Example of an Unsigned Promoted to Signed
It is important to understand the circumstances under which signed integers
are promoted to unsigned.

For example, the execution of the following piece of code would produce an
assertion failure and a core dump.

#include <assert.h>
int main(void) {
int x = -2;
unsigned int y = 5;
assert(x <= y);

}

Consider the range of possible values (interval) of x in this second example.
Again, this code would cause assertion failure:

volatile int random;
unsigned int y = 7;
int x = random;
assert (x >= -7 && x <= y);

However, given that the interval range of x after the second assertion is not [
-7 .. 7], but rather [0 .. 7], the following assertion would hold true.

assert (x>=0 && x<=7);

Implicit promotion explains this behavior.

In fact, in the second example x <= y is implicitly:

((unsigned int) x) <= y /* implicit promotion because y is unsigned */

3-60

Advanced Setup

A negative cast into unsigned gives a big value, which has to be bigger that 7.
And this big value can never be <= 7, and so the assertion can never hold true.

What are the Promotions Rules in Operators?
Knowledge of the rules applying to the standard operators of the C language
will help you to analyze those orange and red checks which relate to overflows
on type operations. Those rules are:

• Unary operators operate on the type of the operand;

• Shifts operate on the type of the left operand;

• Boolean operators operate on Booleans;

• Other binary operators operate on a common type. If the types of the 2
operands are different, they are promoted to the first common type which
can represent both of them.

So:

• Be careful of constant types (refer to “What is the Type of Constants/What
is a Constant Overflow?” on page 8-26);

• Be careful when analyzing any operation between variables of different
types without an explicit cast.

Example
Consider the integral promotion aspect of the ANSI-C standard (see 6.2.1 in
ISO/IEC 9899:1990). On arithmetic operators like +, -, *, % and / , an integral
promotion is applied on both operands. From the PolySpace viewpoint, that
can imply an OVFL or a UNFL orange check.

2 extern char random_char(void);
3 extern int random_int(void);
4
5 void main(void)
6 {
7 char c1 = random_char();
8 char c2 = random_char();
9 int i1 = random_int();
10 int i2 = random_int();

3-61

3 Analysis Setup

11
12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator
13 c1 = c1 + c2; // An OVFL/UNFL warning on the c1 assignment
[from int32 to int8]
14 }

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

2 extern char random_char(void);
3
4 void main(void)
5 {
6 char c1 = random_char();
7 char c2 = random_char();
8
9 c1 = (char)((int)c1 + (int)c2); // Warning UOVFL: due to
integral promotion
10 }

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

In general, integral promotion requires that the abstract machine should
promote the type of each variable to the integral target size before realizing
the arithmetic operation and subsequently adjusting the assignment type.
See the equivalence example of a simple addition of two char(above).

Integral promotion respects the size hierarchy of basic types:

• char (signed or not) and signed short are promoted to int.

• unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (perhaps because of a
16-bit target, for example) then unsigned short is promoted to unsigned int.

• Other types like (un)signed int, (un)signed long int and (un)signed long
long int promote themselves.

3-62

Advanced Setup

Code Preparation for Variables

• “How can I assign ranges to variables/assert?” on page 3-63

• “Checking properties on global variables at any point: Global assert” on
page 3-64

• “How can I model variable values external to my application?” on page 3-67

• “How are variables initialized?” on page 3-68

How can I assign ranges to variables/assert?

Abstract. How can I use assert in PolySpace?

Explanation. Assert is a UNIX/linux/windows macrothat aborts the program
if the test performed inside the assertion proves to be false.

Assert failures are real RTEs because they lead to a processor halt. Because
of this, Verifier will produce checks for them. The behavior matches that
exhibited during execution, because all execution paths for unsatisfied
conditions are truncated (red and then grey). Thus it can be assumed that
any analysis performed downstream of the assert uses value ranges which
satisfy the assert conditions.

Also refer to the use of volatile.

Solution. Assert can be used to constrain input variables to values within a
particular range, for example:

#include <stdlib.h>
int return_betweens_bounds(int min, int max)
{
int ret; // ret is not initialized
ret = random(); // ret ~ [-2^31, 2^31-1]
assert ((min<=ret) && (ret<=max));
// assert is orange because the condition may or may not be fulfilled
// ret ~ [min, max] here because all execution paths that don't
// meet the condition are stopped
return ret;

}

3-63

3 Analysis Setup

Checking properties on global variables at any point: Global
assert
The global assert mechanism works by inserting a check on each write access
to a global variable to ensure it is the range specified.

In order to use this feature you need to firstly include the file "pst_gassert.h",
then create a list Pst_Global_Assert statements for the variables you are
interested in.

This header is located in <PolySpaceInstallDir>/cinclude folder.

The Pst_Global_Assert statement takes the form:
Pst_Global_Assert(identifier, test);

Where identifier has to be a unique reference for each global assert statement,
and test is the logical test to perform on a variable. For example:

#include "pst_gassert.h"
int x;

Pst_Global_Assert(1,x>=0);

void main(void)
{
x=12; // green global assert check on the variable x
x=0; // green global assert check on the variable x
x=-1; // red global assert check on the variable x

}

and associated results, using PolySpace Viewer:

3-64

Advanced Setup

The behavior of a global assertion is as follows:

• It defines the properties of global variables;

• At each new write access to a variable which had been the subject of a
global assertion, PolySpace uses an extra check to indicate whether the
global assert is true or not.

For your case you can create a header file with extern references to the global
variables of interest followed by the global assert statements.

Then, use the tools -include option to force inclusion of this file into every c
file. e.g. "polyspace.h":

#ifndef _POLYSPACE_H_
#define _POLYSPACE_H_

#include "pst_gassert.h"
extern int x;
extern int y;
Pst_Global_Assert(1,x>=0);

3-65

3 Analysis Setup

Pst_Global_Assert(2,((y>=0) && (y<100)));

#endif /* _POLYSPACE_H */

The other activity you may want to do is to initialize the
variables at the start of execution to these values.
To do this you will need to create a hook into the applications
main that you are analyzing or use
data-range-specifications option.

Launching Command.

polyspace-c -include "polyspace.h" ...

Variables Scope. Variables concern external linkage, const variables
and not necessary a defined variable (i.e. could be extern with option
-allow-undef-variables). Static variables are not concerned by this option.

The scalar type allows all modes: Variables of integral type signed or unsigned
allow any mode (char, short, int, long and long long). It allows also structure
fields and arrays cells (of integral type).

Pst_Global_Assert(1, x > 0);
Pst_Global_Assert(2, x < x1);
Pst_Global_Assert(3, x1 > 0 && x1 < 128);
Pst_Global_Assert(4, (s.b & 0x7f) == s.b);
Pst_Global_Assert(5, tab[1]!= 0);

Limitations and Fatal Errors. The feature does not work for pointers, floats
(float, doubleand long double) and struct/union variable:

extern int *p;
extern float f_var;
extern void change1(void);
Pst_Global_Assert(6, *p < 300);
Pst_Global_Assert(7, (change1(), 1 == 1));
Pst_Global_Assert(8, ((x = x + 3) > 10));
Pst_Global_Assert(9, x ++ < 100);
Pst_Global_Assert(10, f_var < 10.0f);

3-66

Advanced Setup

How can I model variable values external to my application?
There are three main considerations.

• Usage of volatile variable;

• Express that the variable content can change at every new read access;

• Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect
following axiom:

"if I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

Thus the value of a volatile variable is "unknown". It can be any value that
can be represented by a variable of its type, and that value can change at any
time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note that although the volatile characteristic of a variable is also commonly
used by programmers to avoid compiler optimisation, this characteristic has
no consequence for PolySpace.

int return_random(void)
{
volatile int random; // random ~ [-2^31, 2^31-1], although

// random is not initialized
int y;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]
random = 100;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]
return random; // random ~ [-2^31, 2^31-1]

}

3-67

3 Analysis Setup

How are variables initialized?
Consider external, volatile and absolute address variable in the following
examples.

Extern. PolySpace works on the principle that a global or static extern
variable could take any value within the range of its type.

extern int x;
int y;
y = 1 / x; // orange because x ~ [-2^31, 2^31-1]
y = 1 / x; // green because x ~ [-2^31 -1] U [1, 2^31-1]

Refer to “Basics: Prerequisites to Reviewing PolySpace™ Results” on page 8-2
for more information on color propagation.

For extern structures containing field(s) of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default
behavior is that these pointers don’t point to any valid function. For results to
be meaningful here, you may well need to define these variables explicitly.

Volatile.

volatile int x; // x ~ [-2^31, 2^31-1], although x has not been
initialised

• if x is a global variable, the NIV is green

• if x is a local variable, the NIV is always orange

Absolute Addressing. The content of an absolute address is always
considered to be potentially uninitialised (NIV orange):

• #define X (* ((int *)0x20000))

- X = 100;

- y = 1 / X; // NIV on X is orange

• int *p = (int *)0x20000;

- *p = 100;

- y = 1 / *p ; // NIV on *p is orange

3-68

Advanced Setup

Code Preparation for Built-in Functions
PolySpace stubs all functions which are not defined within the analysis.
Polyspace provides for all the functions defined in the standard libc an
accurate stub taking into account functional aspect of the function.

All theses functions are declared in the standard list of headers and can
be redefined using its own definition by invalidating the associated set of
functions:

• Using –D POLYSPACE_NO_STANDARD_STUBS for all functions
declared in Standard ANSI headers: assert.h, ctype.h, errno.h,
locale.h, math.h, setjmp.h (’setjmp’ and ’longjmp’ functions are partially
implemented – see <polyspaceProduct>/cinclude/__polyspace__stdstubs.c),
signal.h (’signal’ and ’raise’ functions are partially implemented – see
<polyspaceProduct>/cinclude/__polyspace__stdstubs.c), stdio.h, stdarg.h,
stdlib.h, string.h,and time.h.

• Using –D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions
only declared in strings.h, unistd.h, and fcntl.h.

Most of the time theses functions can be redefined and analyzed by PolySpace
by invalidating the associated set of functions or only the specific function
using –D __polyspace_no_<function name>. For example, If you want to
redefine the fabs() function, you need to add the –D __polyspace_no_fabs
directive and add the code of your own fabs() function in a PolySpace analysis.

There are five exceptions to theses rules The following functions which deal
with memory allocation can not be redefined: malloc(), calloc(), realloc(),
valloc(), alloca(), __built_in_malloc() and __built_in_alloca().

My Code is Multitasking
We strongly recommend to read the different section contained here before
applying the rules described below. Some rules are mandatory; some rules
allow the user to gain selectivity.

The following describes the default behavior of PolySpace Verifier. If the code
to be analyzed does not conform to these assumptions, then some minor
modifications to the code will be required.

3-69

3 Analysis Setup

1 The main procedure must terminate in order for entry-points (or tasks)
to start.

2 All tasks or entry-points start after the end of the main without any
predefined basis regarding: the sequence, priority or preemption. If an
entry-point is seen has dead code, it is because the main contains a red
error and therefore does not terminate.

PolySpace Verifier considers that there is no atomicity, nor timing constraints.

At last, only entry point with void any_name (void) as prototype will be
considered.

This section contains the following topics:

• “Modelling Tasks, Interruptions and Events” on page 3-70

• “Shared Variables” on page 3-77

• “Miscellaneous” on page 3-81

Modelling Tasks, Interruptions and Events

• “Modelling Synchronous Tasks” on page 3-70

• “Interruptions and Asynchronous Events/Tasks/Threads” on page 3-73

• “Are Interruptions Maskable or Preemptive by Default?” on page 3-75

Modelling Synchronous Tasks. It will sometimes be necessary to adapt
the source code, to allow synchronous tasks to be taken into account.

Suppose that an application has the following behavior:

• Once every 10 ms: void tsk_10ms(void);

• Once every 30 ms: ...

• Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and
always return control to the calling context. For example:

3-70

Advanced Setup

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

Now, if each entry-point was to be specified at Verifier launch by using the
option

polyspace-c -entry-points tsk_10ms,tsk_30ms,tsk_50ms

then the results would NOT be valid, because each task would only be called
once.

To address this problem, PolySpace Verifier needs to be informed that the
tasks are purely sequential - that is, that they are functions to be called in a
deterministic order. This can be achieved by writing a function to call each
of the tasks in the correct sequence, and then declaring this new function
as a single task entry point.

Solution 1

Solution 1

Write a function that calls the cyclic tasks in the right order: this is an exact
sequencer. This sequencer is then specified at Verifier launch time as a
single task entry point.

This solution:

• is very precise;

• requires knowledge of the exact sequence of events.

For example, the sequencer might be:

void one_sequential_C_function(void)
{
while (1) {
tsk_10ms();

3-71

3 Analysis Setup

tsk_10ms();
tsk_10ms();
tsk_30ms ();
tsk_10ms();
tsk_10ms();
tsk_50ms ();

}
}

and the associated launching command:

polyspace-c -entry-points one_sequential_C_function

Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution:

• is less precise;

• is quick to code, especially for complicated scheduling

For example, the sequencer might be:

void upper_approx_C_sequencer(void)
{
volatile int random;
while (1) {
if (random) tsk_10ms();
if (random) tsk_30ms();
if (random) tsk_50ms();
if (random) tsk_100ms();
.....

}
}

and the associated launching command:

polyspace-c -entry-points upper_approx_C_sequencer

3-72

Advanced Setup

Note If this is the only entry-point, then it can be added at the end of the
main rather than specified as a task entry point.

Interruptions and Asynchronous Events/Tasks/Threads. Source code
may be adapted to allow asynchronoustasks and interruptions to be taken into
account; for example:

void interrupt isr_1(void)
{ ... }

Without such adaptations, interrupt service routines will appear as grey (dead
code) in the Viewer. The grey code indicates that this code is not executed
and is not taken into account, and so all interruptions and tasks are ignored
by PolySpace Verifier.

The standard execution model is such that the main is executed initially.
Only if the main terminates and returns control (i.e. if it is not an infinite
loop and has no red errors) will the entry points be started, with all potential
starting sequences being modelled automatically. There are several different
approaches which may be adopted to implement the required adaptations.

Solution 1: Where interrupts (ISRs) CANNOT pre-empt each other

If these 3 following conditions are fulfilled:

• the interrupt functions it_1 and it_2 (say) can never interrupt each other;

• each interrupt can be raised several times, at any time;

• they are returning functions, and not infinite loops.

Then these non pre-emptive interruptions may be grouped into a single
function, and that function declared as a entry point.

void it_1(void);
void it_2(void);

void all_interruptions_and_events(void)
{ while (1) {
if (random()) it_1();

3-73

3 Analysis Setup

if (random()) it_2();
... }

}

The associated launching command would be:

polyspace-c -entry-points all_interruptions_and_events

Solution 2: Where interrupts CAN pre-empt each other

If two ISRs can be each be interrupted by the other, then:

• encapsulate each of them in a loop

• declare each loop as a entry point.

One way of approaching that is to replace the original file with a PolySpace
version, as illustrated below.

original_file.c
void it_1(void)
{
... return;

}

void it_2(void)
{
... return;

}

void one_task(void)
{
... return;

}

polyspace.c
void polys_it_1(void)
{
while (1)

if (random())
it_1();

3-74

Advanced Setup

}

void polys_it_2(void)
{
while (1)
if (random())
it_2();

}

void polys_one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be

polyspace-c -entry-points polys_it_1,polys_it_2,polys_one_task

Are Interruptions Maskable or Preemptive by Default?. For user
interruptions, no implicit critical section is defined: they all need to be
written by hand.

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

This occurs because PolySpace Verifier does not distinguish between interrupt
service routines and tasks. If you specify an interrupt to be a "-entry-point"
entry point, it will have the same priority level as the other procedures
declared as tasks ("-entry-points" option). So, because PolySpace Verifier
makes an upper approximation of all scheduling and all interleaving,
in this case that includes the possibility that the ISR might be
interrupted by any other task. There are more paths modelled than could
happen during execution, but this has no adverse effect on of the results
obtained except that more scenarios are considered than could happen during
“real life” execution - and the shared data is not seen as being protected.

3-75

3 Analysis Setup

To address this, the interrupt needs to be embedded in a specific procedure
that uses the same critical section as the one used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a non-maskable interruption.

Original files

void my_main_task(void)
{
...
MASK_IT;
shared_x = 12;
UMASK_IT;
...

}
int shared_x ;

void interrupt my_real_it(void)
{ /* which is by specification unmaskable */
shared_x = 100;

}

Additional C files required by Verifier

#define MASK_IT pst_mask_it()
#define UMASK_IT pst_umask_it()
void other_task (void)
{
MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launching command:-

polyspace-c \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unmask_it:table"

3-76

Advanced Setup

Shared Variables
When PolySpace™ Verifier is launched without any options, all tasks are
examined as though concurrent and with no assumptions about priorities,
sequence order, or timing. Shared variables in this context will always be
considered unprotected, and so will all be shown as orange in the variable
dictionary.

The following mechanisms can be used to protect the variables:

• two explicit protection mechanisms (critical section and mutual exclusion);

• implicit protection (access pattern).

See details below:

• “Differences Between Dictionary and Concurrent Access Graph” on page
3-77

• “Critical Sections” on page 3-78

• “Mutual Exclusion” on page 3-80

• “Access Pattern” on page 3-80

• “Semaphores” on page 3-81

Differences Between Dictionary and Concurrent Access Graph. This
section explains how the dictionary works, and how it differs to the concurrent
access graph.

Consider the following code, which contains 3 tasks

int *ptr;
int a;
int b;
void main(void)
{
ptr = &a;
}

void task1(void)
{a
++;

void task2(void)
{
a = a + 10;
}

void task3(void)
{
ptr = &b;
*ptr = 0;
}

3-77

3 Analysis Setup

The variable “ptr” is a simple pointer. ptr itself is not a shared variable
because it is only accessed by the main and task3. We can confirm this
diagnostic by checking the dictionary which lists

• Writes accesses in the main and in task3

• Read access in task3

But it appears as shared in the dictionary because the concurrent access
graph also gathers information regarding the variable “a”, which it points to.
This highlights the difference between the dictionary and the concurrent
access graph for pointer variables - the concurrent access graph includes both

• Read/write accesses to the pointer itself (ptr in the example below), and

• Read/write accesses to the variable pointed to (a in the example)

Critical Sections. This is the most common protection mechanism found in
applications, and is simple to represent in PolySpace Verifier:

3-78

Advanced Setup

• if one entry-point makes a call to a particular critical section, all other
entry-points will be blocked on the "critical-section-begin" function call
until the originating entry-point calls the "critical-section-end" function,

• this does not mean the code between two critical sections is atomic;

• it is a binary semaphore, so there is only one token per label (CS1 in the
example below). Unlike many implementations of semaphores, it is not
a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example.

Original Code

void proc1(void)
{
MASK_IT;
x = 12; // X is protected
y = 100;
UMASK_IT;

}
void proc2(void)
{
MASK_IT;
x = 11; // X is protected
UMASK_IT;
y = 101; // Y is not protected

}

File Replacing the Original Include File

void begin_cs(void);
void end_cs(void);
#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command line to launch PolySpace Verifier

polyspace-c \
-entry-point proc1,proc2 \
-critical-section-begin"begin_cs:label_1" \

3-79

3 Analysis Setup

-critical-section-end"end_cs:label_1"

Mutual Exclusion. Mutual exclusion between tasks or interrupts can be
implemented while preparing PolySpace Verifier for launch setting.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time,
you may want PolySpace Verifier to take this into account. Consider the
following example.

These entry-points cannot overlap:

• t1 and t3

• t2, t3 and t4

These entry-points can overlap:

• t1 and t2

• t1 and t4

Before launching Verifier, the names of mutually exclusive entry-points are
placed on a single line

polyspace-c -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The myExclusions.txt is also required in the current directory. This will
contain:

t1 t3
t2 t3 t4

Access Pattern. If a variable is a structure, then provided the same fields
arent being accessed, by its nature the variable is protected even if different
tasks are accessing it. In PolySpace, this is regarded as protection by “access
pattern” which will be shown in the Shared Variables section of the Viewer.

3-80

Advanced Setup

Consider the following example.

If a variable x, is a structure containing two fields, A and B, and

• task_1 only reads/writes field A

• task_2 only reads/writes field B

Then x is shown as being protected by access pattern in PolySpace Viewer.

Semaphores. Although it is possible to implement in c, it is not
possible to take into account a semaphore system call in PolySpace
Verifier. Nevertheless, Critical sections may be used to model the behavior.

Miscellaneous

• “Mailboxes” on page 3-81

• “Atomicity (Can an Instruction be Interrupted by Another)” on page 3-84

• “Priorities” on page 3-85

Mailboxes. Suppose that an application has several tasks, some of which
post messages in a mailbox while others read them asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. It is likely that the source files will be
unavailable because the procedures are part of the OS libraries, but the
mechanism needs to be modelled if the analysis is to be meaningful.

By default, PolySpace Verifier will automatically stub the missing OS send
and receive procedures. Such a stub will exhibit the following behavior:

• for send(char *buffer, int length), the content of the buffer will be written
only when the procedure is called;

• for receive(char *buffer, int *length), each element of the buffer will contain
the full range of values appropriate to that data type.

This and other mechanisms are available, with different levels of precision.

3-81

3 Analysis Setup

Let PolySpace Verifier stub
automatically

• quick and easy to code;

• imprecise because there is no
direct connection between a
mailbox sender and receiver. That
means that even if the sender is
only submitting data within a
small range, the full data range
appropriate for the type(s) will be
for the receiver data.

Provide a real mailbox mechanism • can be very costly (time
consuming) to implement;

• can introduce errors in the stubs;

• provides little additional benefit
when compared to the upper
approximation solution

Provide an upper approximation
of the mailbox

This models the mechanism such
that new read from the mailbox
reads one of the recently posted
messages, but not necessarily the
last one.

• quick and easy to code;

• gives precise results;

Consider the following detailed implementation of the upper approximation
solution.

polyspace_mailboxes.h

typedef struct _r {
int length;
char content[100];

} MESSAGE;
extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive(MESSAGE *msg);

3-82

Advanced Setup

polyspace_mailboxes.c

#include "polyspace.h"
MESSAGE mailbox;
void send(MESSAGE * msg)
{
volatile int test;
if (test) mailbox = *msg;
// a potential write to the mailbox

}
void receive(MESSAGE *msg)
{
*msg = mailbox;

}

Original code

#include "polyspace_mailboxes.h"
void t1(void)
{
MESSAGE msg_to_send;
int i;
for (i=0; i<100; i++)
msg_to_send.content[i] = i;

msg.length = 100;
send(&msg);

}
void t2(void)
{
MESSAGE msg_to_read;
receive (&msg_to_read);

}

PolySpace Verifier behavior then proceeds on the assumption that each new
read from the mailbox reads a message, but not necessarily the last one.

The associated launching command is

polyspace-c -entry-points t1,t2

3-83

3 Analysis Setup

Atomicity (Can an Instruction be Interrupted by Another).

Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

In general terms, PolySpace Verifier does not take into account either CPU
instruction decomposition or timing considerations.

It is assumed by PolySpace that instructions are never atomic except in the
case of read and write instructions. PolySpace Verifier makes an upper
approximation of all scheduling and all interleaving. There are more
paths modelled than could happen during execution, but given that all
possible paths are always analyzed, this has no adverse effect on of the
results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for
example). In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation was not
atomic it could be interrupted by another instruction in the middle of the
write operation.

• Task 1: Writes 0xFF55 to x.

• Task 2: Interrupts task 1. Depending on the timing, the value of x could be
any of 0xFF00, 0x0055 or 0xFF55.

PolySpace Verifier considers write/read instructions atomic, so task 2 can
only read 0xFF55, even if X is not protected (refer to “Shared Variables”
on page 3-77).

Critical sections

3-84

Advanced Setup

In terms of critical sections, PolySpace Verifier does not model the concept of
atomicity. A critical section only guarantees that once the function associated
with -critical-section-begin has been called, any other function making use of
the same label will be blocked. All other functions can still continue to run,
even if somewhere else in another task a critical section has been started.

PolySpace Verifiers analysis of Run Time Errors (RTE) supposes that there
was no conflict when writing the shared variables. Hence even if a shared
variable is not protected, the RTE analysis is complete and correct.

More information is available in “Critical Sections” on page 3-78.

Priorities. Priorities are not taken into account by PolySpace as such.
However, the timing implications of software execution are not relevant to
the analysis performed by Verifier, which is usually the primary reason for
implementing software task prioritisation. In addition, priority inversion
issues can mean that it would be dangerous to assume that priorities
can protect shared variables. For that reason, PolySpace make no such
assumption.

In practice, while there is no facility to specify differing task priorities, all
priorities are taken into account because of the default behavior of PolySpace
Verifier assumes that:

• all task entry points (as defined with the option -entry-points) start
potentially at the same time;

• they can interrupt each other in any order, no matter the sequence of
instructions - and so all possible interruptions will be accounted for, in
addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply
use polyspace-c -entry-points t1,t2 in the usual way.

• t1 will be able to interrupt t2 at any stage of t2, which models the behavior
at execution time;

• t2 will be able to interrupt t1 at any stage of t1, which models a behavior
which (ignoring priority inversion) would never take place during execution.
PolySpace Verifier has made an upper approximation of all scheduling

3-85

3 Analysis Setup

and all interleaving. There are more paths modelled than could happen
during execution, but this has no adverse effect on of the results obtained.

3-86

4

PolySpace™ Software Day
to Day Usage

PolySpace™ In One Click Overview
(p. 4-2)

Provides an overview of the
PolySpace™ In One Click plug-in

Using PolySpace™ In One Click
(p. 4-3)

Describes how to use PolySpace In
One Click

Using Right-Click to Launch
PolySpace™ Verification (p. 4-6)

Describes how to start a PolySpace
verification using right-click

4 PolySpace™ Software Day to Day Usage

PolySpace™ In One Click Overview
The PolySpace™ In One Click plug-in has been specifically designed for
developers. Since developers tend to work on the same project over time (new
code, unit tests, integration), they often need the same options for multiple
files in their project. PolySpace In One Click allows you to easily launch
verification of multiple files in the same project (or other files of the same
application) using the same set of options.

Once you set up your preferred options, PolySpace In One Click uses them for
as many files as the project holds, without you having to continuously update
them. Launching an analysis is then just a matter of clicking.

On a Windows® systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a “Send To” option on the desktop pop-up menu:

4-2

Using PolySpace™ In One Click

Using PolySpace™ In One Click

In this section...

“Overview” on page 4-3

“Creating an Active Configuration File Project” on page 4-3

“Using the TaskBar Icon” on page 4-3

Overview
Usage consists in launching analysis through out an active PolySpace™
project.

Creating an Active Configuration File Project
In each PolySpace product you can find a PolySpace configuration file
(associated to each language) which can be copied in your own directory
and can serve as a basis for your own active configuration project file.
One configuration file can found for each language located in <PolySpace
Install Products>\Examples\Demo_<Language> folder.

You can also use the PolySpace Launcher added on your desktop windows
during installation to create a new active project.

Using the TaskBar Icon
For a new project, choose an active PolySpace configuration project file, with
a .cfg (a Verifier Configuration file) or .dsk (a Desktop Configuration file)
extension. Some common options will be set up in this file, and all further
launching analysis will use this active set of options.

4-3

4 PolySpace™ Software Day to Day Usage

Click the PolySpace TaskBar Icon, then select one of the following options:

• Set active project — Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working directory.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

4-4

Using PolySpace™ In One Click

Note By default there is no selected configuration file. You can create an
empty file with a .cfg or .dsk extension.

• Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and path of standard and specific headers.
It does not affect the precision of an analysis and the results directory.

The active configuration file can be updated every time you consider that a
coding file is part of the whole analysis.

• Viewer — Opens the PolySpace viewer. This allows you to see verification
results in the standard graphical interface. By default, the viewer
opens results in the results directory, which is specified in the “Analysis
Parameters” dialog box.

• Launcher — Opens the PolySpace Launcher. This allows you to launch an
analysis using the standard PolySpace graphical interface.

• Spooler — Opens the PolySpace Spooler. If you selected a server analysis
in the “PolySpace Preferences” dialog box, the spooler allows you to follow
the status of the analysis.

4-5

4 PolySpace™ Software Day to Day Usage

Using Right-Click to Launch PolySpace™ Verification
Once you have set your active configuration file, you can also right click on
one or more files to start an analysis using the configuration file settings.

Note The Send To shortcut calls
<PolySpaceCommon>\PolySpaceInOneClick\PolySpaceInOneClick.exe -f.

4-6

5

MISRA® Checker

PolySpace™ MISRA® Checker
Overview (p. 5-2)

Describes the PolySpace MISRA®

checker

Rules Supported (p. 5-4) Describes the MISRA rules
supported by PolySpace™ software

Rules Partially Supported (p. 5-33) Describes MISRA rules partially
supported by PolySpace software

Rules Not Checked (p. 5-45) Describes MISRA rules not checked
by PolySpace software

5 MISRA® Checker

PolySpace™ MISRA® Checker Overview
The PolySpace™ MISRA® checker helps developers achieves MISRA
compliance. The PolySpace MISRA checker is based on MISRA C®:2004,
(http://www.misra-c.com) enabling PolySpace software to provide messages at
compile phase (mainly) when rules are not respected.

Only two options -misra2 and -includes-to-ignore, permit you to enable and
verify C code sources on nearly all of the 141 rules, part of MISRA C:2004
and one rule (named 15.0) implemented by PolySpace software (this rule is
described in the MISRA C:2004 manual about switch statements). “Setting Up
and Launching the MISRA C® Checker” on page 2-50 explains how to set up
the MISRA checker from a graphical point of view using PolySpace Launcher.

Theses 142 rules are divided in three categories:

• 102 required and advisory rules fully supported. PolySpace software can
check all theses rules without any limitations. See “Rules Supported” on
page 5-4.

• 20 required and advisory rules partially supported. PolySpace software
can check all theses rules with some limitations. Theses limitations are
described in the associated “Note” paragraph for each rule. See “Rules
Partially Supported” on page 5-33.

• 20 required and advisory rules which cannot be verified by PolySpace
software. These rules cannot be verified because they are outside the scope
of PolySpace verification. They may concern documentation, dynamic
aspects or functional aspects of MISRA rules. Theses rules are not checked.
The “comment” column details the reason. See “Rules Not Checked” on
page 5-45.

Note Every violation, warning or error, will be written in the log file at
compilation time of a PolySpace analysis, except for rules 9.1 (NIV checks),
12.11 (OVFL check using -detect-unsigned-overflows), 13.7 (grey checks), 14.1
(grey checks), 16.2 (Call graph) and 21.1 (all runtime errors).

5-2

http://www.misra-c.com/

PolySpace™ MISRA® Checker Overview

You will find a set of required and advisory MISRA rules in “Applying Coding
Rules to Reduce Oranges” on page 9-87 which can have direct or indirect
impact on the PolySpace selectivity (reliability percentage).

5-3

5 MISRA® Checker

Rules Supported

In this section...

“Language Extensions” on page 5-5

“Character Sets” on page 5-5

“Identifiers” on page 5-6

“Types” on page 5-7

“Constants” on page 5-8

“Declarations and Definitions” on page 5-9

“Initialization” on page 5-11

“Arithmetic Type Conversion” on page 5-12

“Pointer Type Conversion” on page 5-16

“Expressions” on page 5-17

“Control Statement Expressions” on page 5-20

“Control Flow” on page 5-21

“Switch Statements” on page 5-23

“Functions” on page 5-24

“Pointers and Arrays” on page 5-25

“Structures and Unions” on page 5-25

“Preprocessing Directives” on page 5-26

“Standard Libraries” on page 5-30

“Run-Time Failures” on page 5-32

5-4

Rules Supported

Language Extensions

N. MISRA® Definition Messages in log file Detailed PolySpace™
Specification

2.2 source code shall only use /*
*/ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Character Sets

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

4.1 Only those escape sequences
which are defined in the
ISO® C standard shall be
used.

\<character> is not an ISO
C escape sequence
Only those escape
sequences which are
defined in the ISO C
standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

5-5

5 MISRA® Checker

Identifiers

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide
that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A tydedef name shall be a
unique identifier

{ typedef name }’%s’ should
not be reused. (already
used as { typedef name } at
%s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a
unique identifier

{tag name }’%s’ should not
be reused. (already used as
{tag name } at %s:%d)

warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{ static identifier/parameter
name }’%s’ should not be
reused. (already used as {
static identifier/parameter
name } at %s:%d)

warning when a static
name is reused as another
identifier name

5-6

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with
the exception of structure
and union member names.

{member name }’%s’ should
not be reused. (already
used as { member name } at
%s:%d)

warning when a idf in a
namespace is reused in
another namespace

5.7 No identifier name should
be reused.

{identifier}’%s’ should not
be reused. (already used as
{ identifier} at %s:%d)

warning on other conflicts
(including member names)

Types

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

6.1 The plain char type shall
be used only for the storage
and use of character values

Only permissible operators
on plain chars are ’=’, ’==’ or
’!=’ operators.

There is a warning when a
plain char is used with an
operator other than =, == or
!=.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition. There is
no exception on bitfields.

5-7

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

6.4 Bit fields shall only be
defined to be of type
unsigned int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

5-8

Rules Supported

Declarations and Definitions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call
must be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.4 If objects or functions
are declared more than
once their types shall be
compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of ’XX’ function has
incompatible type with
its definition.

• Global declaration
of ’XX’ variable has
incompatible type with
its definition.

During link phase, errors
are converted into warnings
with -permissive-link
option.
Cannot be turned Off.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object ’XX’ should not be
defined in a header file.

• Function ’XX’ should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

5-9

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

8.6 Functions shall always be
declared at file scope.

Function ’XX’ should be
declared at file scope.

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX.

• Global variable has
multiples tentative of
definitions

Tentative of definitions
are considered as
definitions, No warning
on undefined objects with
-allow-undef-variables
option, No warning on
predefined symbols.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Not checked if
-main-generator option
is set. Assumes that 8.1 is
not violated. No warning if
0 uses.

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Array XX has unknown
size.

5-10

Rules Supported

Initialization

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

9.1 All automatic variables
shall have been assigned a
value before being used.

Done by Verifier (NIV
Checks).
Cannot be Off.

9.2 Braces shall be used to
indicate and match the
structure in the non-zero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the non-zero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

5-11

5 MISRA® Checker

Arithmetic Type Conversion

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion
of the expression of
underlying type ?? to
the type ?? that is not a
wider integer type of the
same signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are ?? and ??

• Implicit conversion of
the binary right hand
operand of underlying
type ?? to ?? that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type ?? to
?? that is not an integer
type.

• Implicit conversion of
the binary right hand
operand of underlying
type ?? to ?? that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying
type ?? to ??, but it is a
complex expression.

1 ANSI® C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

2 An expression of bool or
enum types has int as
underlying type.

3 Plain char may have
signed or unsigned
underlying type
(depending on PolySpace
target configuration or
option setting).

4 The underlying type
of a simple expression
of struct.bitfield is the
base type used in the
bitfield definition, the
bitfield width is not
token into account and it
assumes that only signed
| unsigned int are used
for bitfield (Rule 6.4).

5-12

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

10.1
(cont.)

• Implicit conversion
of complex integer
expression of underlying
type ?? to ??.

• Implicit conversion of
non-constant integer
expression of underlying
type ?? in function return
whose expected type is
??.

• Implicit conversion of
non-constant integer
expression of underlying
type ?? as argument
of function whose
corresponding parameter
type is ??.

5-13

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of
the expression from ??
to ?? that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from ?? to
??, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from ?? to
?? that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from ??
to ??, but it is a complex
expression.

• Implicit conversion
of complex floating
expression from ?? to ??.

• Implicit conversion of
floating expression of ??
type in function return
whose expected type is
??.

• Implicit conversion of
floating expression of
?? type as argument
of function whose
corresponding parameter
type is ??.

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or
T2 = T1.

5-14

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex ppliedta of
underlying type ?? may
only be cast to narrower
integer type of same
signedness, however the
destination type is ??.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
ppliedtation is applied on
the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may
have signed or
unsigned underlying
type (depending
on Polyspace Verifier
target configuration or
option setting).

• The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are
used for bitfield (Rule
6.4).

5-15

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of ??
type may only be cast to
narrower floating type,
however the destination
type is ??.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if
T2 is on the right hand of
T1 or T2 = T1.

10.5 If the bitwise operator ~ and
<< are pplied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type
of the operand

Bitwise [<<|~] is applied
to the operand of
underlying type [unsigned
char|unsigned short], the
result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit ‘U suffix on
constants of an unsigned
type.

Pointer Type Conversion

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

11.1 Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type

Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type.

Casts and implicit
conversions involving a
function pointer

11.2 Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void

Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void.

There is also a warning on
qualifier loss

5-16

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

11.3 A cast should not be
performed between a
pointer type and an integral
type

A cast should not be
performed between a
pointer type and an integral
type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a
pointer to object type and
a different pointer to object
type.

A cast should not be
performed between a
pointer to object type and a
different pointer to object
type.

Extended to all conversions

11.5 A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.1 Limited dependence
should be placed on Cs
operator precedence rules
in expressions

Limited dependence
should be placed on Cs
operator precedence rules
in expressions

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

he size of operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses and function calls

12.4 The right hand operand of
a logical && or || operator
shall not contain side
effects.

The right hand operand of
a logical && or || operator
shall not contain side
effects.

No warning on volatile
accesses and function calls.

5-17

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.5 The operands of a logical
&& or || shall be
primary-expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a logical
&& or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

12.6 Operands of logical
operators (&&, || and
!) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, || or !).

• Operand of ’!’ logical
operator should be
effectively Boolean. Left
operand of ’%s’ logical
operator should be
effectively Boolean.

• Right operand of ’%s’
logical operator should
be effectively Boolean.

• Boolean should not be
used as operands to
operators other than
’&&’, ’||’ or ’!’.

"the operand of a logical
operator should be a
Boolean". As there are no
Boolean in "C" but as the
standard assumes it, some
operator return Boolean
like expression (var == 0).
Example:

unsigned char flag; if
(!flag) raises the rule:
the operand of "!" is "flag".
And "flag" is not a Boolean
but an unsigned char.
To be 12.6 MISRA
compliant, the code need to
be written like this:

if (!(flag != 0))
or if (flag == 0)

5-18

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.7 Bitwise operators shall
not be applied to operands
whose underlying type is
signed

• [~/Left Shift/Right
shift/&] operator applied
on an expression whose
underlying type is signed.

• Bitwise ~ on operand of
signed underlying type
??.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type ??.

• Bitwise [& | ^] on two
operands of s

The underlying type for
an integer used in a
re-processor expression is
signed when :

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative

• shift amount is bigger
than 64

• Bitwise [<< >>] count out
of range [0 ..X] (width of
the underlying type ?? of
the left hand operand -
1)..

The numbers that
are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check is also extended
onto bitfields with the field
width or the width of the
base type when it is within
a complex expression

5-19

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.9 The unary minus operator
shall not be applied to
an expression whose
underlying type is unsigned.

• Unary - on operand of
unsigned underlying type
??.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for
an integer used in a
re-processor expression is
signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall
not be used.

The comma operator shall
not be used.

12.13 The increment (++) and
decrement (–) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (–) operators
should not be mixed with
other operators in an
expression

warning when ++ or –
operators are not used
alone.

Control Statement Expressions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

5-20

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example:
if (2)

13.7 Boolean operations whose
results are invariant shall
not be permitted

Boolean operator ’%s’
should not have invariant
result. (Result is always
’true/false’).

Done by Verifier (grey
Checks). It is also checked
during compilation on
comparison between with a
least one constant operand.

Cannot be Off.

Control Flow

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

14.1 There shall be no
unreachable code.

Done by PolySpace (grey
checks).
Cannot be Off.

14.2 All non-null statements
shall either have at lest
one side effect however
executed, or cause control
flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.4 The goto statement shall
not be used.

The goto statement shall
not be used.

14.5 The continue statement
shall not be used.

The continue statement
shall not be used.

5-21

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

14.6 For any iteration statement
there shall be at most one
break statement used for
loop termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a
single point of exit at the
end of the function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct
shall be followed by a
compound statement.
The else keyword shall
be followed by either a
compound statement, or
another if statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs
should contain a final else
clause.

All if else if constructs
should contain a final else
clause.

5-22

Rules Supported

Switch Statements

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

15.0 Unreachable code is
detected between switch
statement and first case.

Note this is not a MISRA
C®2004 rule.

switch statements syntax
normative restrictions.

On the following example,
the rule is displayed in the
log file at line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4 case 1: ...

The code between switch
statement and first case
is checked as grey by
PolySpace verification. It
follows ANSI standard
behavior.

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

15.3 The final clause of a switch
statement shall be the
default clause

The final clause of a switch
statement shall be the
default clause

5-23

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

15.4 A switch expression should
not represent a value that
is effectively Boolean

A switch expression should
not represent a value that
is effectively Boolean

15.5 Every switch statement
shall have at least one case
clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly
or indirectly.

Function %s should not call
itself.

Done by PolySpace software
(Call graph in the viewer
gives the information).
PolySpace verification also
checks that partially during
compilation phase.
Cannot be Off.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

16.5 Functions with no
parameters shall be
declared with parameter
type void.

Functions with no
parameters shall be
declared with parameter
type void.

Definitions are also
checked.

5-24

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.8 All exit paths from a
function with non-void
return type shall have an
explicit return statement
with an expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional
return with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesised parameter
list, which may be empty.

Function identifier XX
should be preceded by a &
or followed by a parameter
list.

Pointers and Arrays

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

Structures and Unions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

18.4 Unions shall not be used Unions shall not be used.

5-25

5 MISRA® Checker

Preprocessing Directives

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

19.1 #include statements in a
file shall only be preceded
by other pre-processors
directives or comments

A message is displayed
when a #include directive
is preceded by other
things than pre-processor
directives, comments,
spaces or “newlines”.

19.2 Non-standard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ’, \, " or
/* between < and > in
#include <filename>

• A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• ‘#include’ expects
"FILENAME" or
<FILENAME>

• ‘#include_next’ expects
"FILENAME" or
<FILENAME>

Cannot be Off.

19.5 Macros shall not be #defined
and #undefd within a block. • Macros shall not be

#define’d within a block.

• Macros shall not be
#undef ’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

5-26

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

19.7 A function should be used
in preference to a function
like-macro.

Message on all function-like
macros expansions

19.8 A function-like macro shall
not be invoked without all
of its arguments

• arguments given to
macro ‘<name>’

• macro ‘<name>’ used
without args.

• macro ‘<name>’ used
with just one arg.

• macro ‘<name>’
used with too many
(<number>) args.

Cannot be Off.

19.9 Arguments to a
function-like macro shall
not contain tokens that
look like pre-processing
directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the ’#’
character appears in a
macro argument (outside
a string or character
constant)

19.10 In the definition of a
function-like macro each
instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
##.

Parameter instance shall be
enclosed in parentheses.

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

‘<name>’ is not defined.

5-27

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

19.12 There shall be at most one
occurrence of the # or ##
pre-processor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## pre-processor
operators should not be
used

Message on definitions
of macros using # or ##
operators

19.14 The defined pre-processor
operator shall only be used
in one of the two standard
forms.

‘defined’ without an
identifier.

Cannot be Off.

5-28

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

19.16 Preprocessing directives
shall be syntactically
meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

• ‘#elif ’ not within a
conditional.

• ‘#else’ not within a
conditional.

• ‘#elif ’ not within a
conditional.

• ‘#endif ’ not within a
conditional.

• unbalanced ‘#endif ’.

• unterminated ‘#if ’
conditional.

• unterminated ‘#ifdef ’
conditional.

• unterminated ‘#ifndef ’
conditional.

Cannot be Off.

5-29

5 MISRA® Checker

Standard Libraries

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.1 Reserved identifiers,
macros and functions in
the standard library, shall
not be defined, redefined or
undefined.

• The macro ‘<name> shall
not be redefined.

• The macro ‘<name> shall
not be undefined.

20.2 The names of standard
library macros, objects
and functions shall not be
reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the
rule that is detected as
violated is 20.1. Tentative
of definitions are considered
as defintions.

20.4 Dynamic heap memory
allocation shall not be used. • The macro ‘<name> shall

not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is
not violated

20.6 The macro offsetof, in
library <stddef.h>, shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is
not violated

5-30

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.7 The setjmp macro and the
longjmp function shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling
facilities of <signal.h>
shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually
macros and are expanded
in the code, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

20.9 The input/output library
<stdio.h> shall not be used
in production code.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are
actually macros and are
expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is
not violated

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and
atoll functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

5-31

5 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.11 The library functions abort,
exit, getenv and system
from library <stdlib.h>
shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

Run-Time Failures

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

21.1 Minimisation of run-time
failures shall be ensured by
the use of at least one of:

• static analysis
tools/techniques;

• dynamic analysis
tools/techniques;

• explicit coding of checks
to handle run-time faults.

Done by PolySpace Verifier
(Run-time error checks).
Cannot be Off.

5-32

Rules Partially Supported

Rules Partially Supported

In this section...

“Environment” on page 5-33

“Language Extension” on page 5-35

“Identifier” on page 5-35

“Declarations and Definitions” on page 5-36

“Expressions” on page 5-37

“Control Statement Expressions” on page 5-38

“Control Flow” on page 5-40

“Switch Statements” on page 5-40

“Functions” on page 5-41

“Pointers and Arrays” on page 5-42

“Preprocessing Directives” on page 5-43

Environment

Rule Description

1.1
(Required)

All code shall conform to ISO® 9899:1990 “Programming
languages - C”, amended and corrected by ISO/IEC
9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

5-33

5 MISRA® Checker

Rule Description

Messages in log:

• ANSI® C does not allow ‘#include_next’

• ANSI C does not allow macros with variable arguments list

• ANSI C does not allow ‘#assert’

• ANSI C does not allow‘#unassert’

• ANSI C does not allow testing assertions

• ANSI C does not allow ‘#ident’

• ANSI C does not allow ‘#sccs’

• text following ‘#else’ violates ANSI standard.

• text following ‘#endif ’ violates ANSI standard.

• text following ‘#else’ or ‘#endif ’ violates ANSI standard.

• ANSI C90 forbids ’long long int’ type.

• ANSI C90 forbids ’long double’ type.

• ANSI C90 forbids long long integer constants.

• Keyword ’inline’ should not be used.

• Array of zero size should not be used.

• Integer constant does not fit within unsigned long int.

• Integer constant does not fit within long int.

Note All the supported extensions lead to a violation of this MISRA® rule.
Standard compilation error messages do not lead to a violation of this
MISRA rule and remain unchanged. Can be turned to Off (see -misra2
option).

5-34

Rules Partially Supported

Language Extension

Rule Description

2.1
(Required)

Assembly language shall be encapsulated and isolated.

Message in log:

• Assembly language shall be encapsulated and isolated.

Note no warnings if code is encapsulated in asm functions or in asm
pragma (only warning is given on asm statements even if it is encapsulated
by a MACRO). Can be turned to Off.

Identifier

Rule Description

5.1
(Required)

Identifiers (internal and external) shall not rely on the
significance of more than 31 characters

Message in log:

• Identifier ’XX’ should not rely on the significance of more than 31
characters.

Note Only global variables (external linkage) are checked. Can be turned
to Off

5-35

5 MISRA® Checker

Declarations and Definitions

Rule Description

8.3
(Required)

For each function parameter the type given in the
declaration and definition shall be identical, and the return
types shall also be identical.

Message in log:

• Definition of function ’XX’ incompatible with its declaration.

Note Assumes that rule 8.1 is not violated. The rule is restricted to
compatible types. Can be turned to Off

8.7
(Required)

Objects shall be defined at block scope if they are only
accessed from within a single function

Message in log:

• Object ’XX’ should be declared at block scope.

Note Restricted to static objects. Can be turned to Off

8.8
(Required)

An external object or function shall be declared in one file
and only one file

Message in log:
• Function/Object ’XX’ has external declarations in multiples files.

Note Restricted to explicit extern declarations (tentative of definitions
are ignored). Can be turned to Off

5-36

Rules Partially Supported

Expressions

Rule Description

12.2
(Required)

The value of an expression shall be the same under any
order of evaluation that the standard permits.

Messages in log:

• The value of ‘sym’ depends on the order of evaluation.

• The value of volatile ‘sym’ depends on the order of evaluation because
of multiple accesses.

Note The expression is a simple expression of symbols (Unlike i = i++;
no detection on tab[2] = tab[2]++;). Rule 12.2 check assumes that no
assignment in expressions that yield a Boolean values (rule 13.1) and the
comma operator is not used (rule 12.10). Can be turned to Off.

12.11
(Advisory)

Evaluation of constant unsigned expression should not lead
to wrap-around.

No message.

Note This rule is partially implemented with -detect-unsigned-overflow
option in PolySpace™ software. Concerning possible pre-processing
overflows, PolySpace pre-processor does not take into account target basic
types and considers always 32-Bit long int. Cannot be ticked.

12.12
(Required)

The underlying bit representations of floating-point values
shall not be used.

5-37

5 MISRA® Checker

Rule Description

Message in log:
• The underlying bit representations of floating-point values shall not

be used.

Note Warning on casts with float pointers (excepted with void *). Can
be turned to Off.

Control Statement Expressions

Rule Description

13.3
(Required)

Floating-point expressions shall not be tested for equality
or inequality.

Message in log:

• Floating-point expressions shall not be tested for equality or inequality.

Note Warning on directs tests only. Can be turned to Off.

13.4
(Required)

The controlling expression of a for statement shall not
contain any objects of floating type

Message in log:

• The controlling expression of a for statement shall not contain any
objects of floating type

Note If for index is a variable symbol, checked that it is not a float. Can
be turned to Off.

5-38

Rules Partially Supported

Rule Description

13.5
(Required)

The three expressions of a for statement shall be concerned
only with loop control

Messages in log:
• 1st expression should be an assignment.

• Bad type for loop counter (XX).

• 2nd expression should be a comparison.

• 2nd expression should be a comparison with loop counter (XX).

• 3rd expression should be an assignment of loop counter (XX).

• 3rd expression: assigned variable should be the loop counter (XX).

Note Checked if the for loop index (V) is a variable symbol; checked if V is
the last assigned variable in the first expression (if present). Checked if, in
first expression, if present, is assignment of V; checked if in 2nd expression,
if present, must be a comparison of V; Checked if in 3rd expression, if
present, must be an assignment of V. Can be turned to Off.

13.6
(Required)

Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop.

Message in log:
• Numeric variables being used within a for loop for iteration counting

should not be modified in the body of the loop.

Note Detect only direct assignments if the for loop index is known and
if it is a variable symbol. Can be turned to Off.

5-39

5 MISRA® Checker

Control Flow

Rule Description

14.3
(Required)

All non-null statements shall either

• have at lest one side effect however executed, or

• cause control flow to change

Message in log:

• A null statement shall appear on a line by itself

Note We assume that a ’;’ is a null statement when it is the first character
on a line (excluding comments). The rule is violated when:

• there are some comments before it on the same line.

• there is a comment immediately after it

• there is something else than a comment after the ’;’ on the same line.

Can be turned to Off.

Switch Statements

Rule Description

15.0
(Advisory)

Misra Switch syntax rules

5-40

Rules Partially Supported

Rule Description

Message in log:

• switch statements syntax normative restriction

Note Warning on declarations or instructions before the first switch case.
PolySpace checks that if declarations or statements are put between the
switch() and first case keyword.

This rule is a clearly advisory made by MISRA C® consortium.

Can be turned to Off.

Functions

Rule Description

16.4
(Required)

The identifiers used in the declaration and definition of a
function shall be identical.

Message in log:

• The identifiers used in the declaration and definition of a function shall
be identical.

Note Assumes that rules 8.8, 8.1 and 16.3 are not violated. Can be turned
to Off.

16.6
Required)

The number of arguments passed to a function shall match
the number of parameters.

5-41

5 MISRA® Checker

Rule Description

Messages in log:
• Too many arguments to XX.

• Insufficient number of arguments to XX.

Note Assumes that rule 8.1 is not violated. Can be turned to Off.

Pointers and Arrays

Rule Description

17.4
(Required)

Array indexing shall be the only allowed form of pointer
arithmetic.

Message in log:

• Array indexing shall be the only allowed form of pointer arithmetic.

Note Warning on operations on pointers. (p+I, I+p and p-I, where p is a
pointer and I an integer). Can be turned to Off.

17.6
(Required)

The address of an object with automatic storage shall not be
assigned to an object that may persist after the object has
ceased to exist.

Message in log:
• Pointer to a parameter is an illegal return value. Pointer to a local is an

illegal return value.

Note Warning when returning a local variable address or a parameter
address. Can be turned to Off.

5-42

Rules Partially Supported

Preprocessing Directives

Rule Description

19.4
(Required)

C macros shall only expand to a braced initialiser, a constant,
a parenthesised expression, a type qualifier, a storage class
specifier, or a do-while-zero construct.

Message in log:

• Macro ‘<name>’ does not expand to a compliant construct.

Note We assume that a macro definition does not violate this rule when it
expands to:

• a braced construct (not necessarily an initializer)

• a parenthesised construct (not necessarily an expression)

• a number

• a character constant

• a string constant (can be the result of the concatenation of string field
arguments and literal strings)

• the following keywords: typedef, extern, static, auto, register, const,
volatile, __asm__ and __inline__

• a do-while-zero construct

Can be turned to Off.

19.15
(Required)

Precautions shall be taken in order to prevent the contents
of a header file being included twice.

5-43

5 MISRA® Checker

Rule Description

Message in log:
• Precautions shall be taken in order to prevent multiple inclusions.

Note When a header file is formatted as follows:

#ifndef <control macro>
#define <control macro>
<contents>
#endif

It is assumed that precautions have been taken to prevent multiple
inclusions. Otherwise, a violation of this MISRA rule is detected.

Can be turned to Off.

5-44

Rules Not Checked

Rules Not Checked

In this section...

“Environment” on page 5-45

“Language Extensions” on page 5-46

“Documentation” on page 5-47

“Types” on page 5-48

“Functions” on page 5-48

“Pointers and Arrays” on page 5-48

“Structures and Unions” on page 5-49

“Standard Libraries” on page 5-49

Environment

Rule Description Comments

1.2
(Required)

No reliance shall be placed
on undefined or unspecified
behavior

Not statically checkable
unless the data dynamic
properties is taken into
account

1.3
(Required)

Multiple compilers and/or
languages shall only be
used if there is a common
defined interface standard
for object code to which the
language/compilers/assemblers
conform.

It is a process rule method.

5-45

5 MISRA® Checker

Rule Description Comments

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

Language Extensions

Rule Description Comments

2.4
(Advisory)

Sections of code should not be
“commented out”

It might be some pseudo code
or code that does not compile
inside a comment.

5-46

Rules Not Checked

Documentation

Rule Description Comments

3.1
(Required)

All usage of
implementation-defined
behavior shall be documented.

The documentation of
compiler must be checked.
Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.
Documentation can not
be checked.

3.2
(Required)

The character set and the
corresponding encoding shall
be documented.

The documentation of
compiler must be checked.

3.3
(Advisory)

The implementation of
integer division in the
chosen compiler should be
determined, documented and
taken into account.

The documentation of
compiler must be checked.

3.4
(Required)

All uses of the #pragma
directive shall be documented
and explained.

The documentation of
compiler must be checked.

3.5
(Required)

The implementation-defined
behavior and packing of
bitfields shall be documented
if being relied upon.

The documentation of
compiler must be checked.

3.6
(Required)

All libraries used in
production code shall be
written to comply with the
provisions of this document,
and shall have been subject to
appropriate validation.

The documentation of
compiler must be checked.

5-47

5 MISRA® Checker

Types

Rule Description Comments

6.2
(Required)

Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

Note this rule is partially
implemented in Rule 6.1.

Consider an external function
returning a char is been used
and increased. There is no
mean without the functional
knowledge that this function
stores a character value or
not.

Functions

Rule Description Comments

16.7
(Advisory)

A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Not statically checkable
unless the pointer analysis
has been done.

16.10
(Required)

If a function returns error
information, then that error
information shall be tested.

Not statically checkable
unless type defining error is
standardized.

Pointers and Arrays

Rule Description Comments

17.1
(Required)

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Not statically checkable
unless the pointer analysis
has been done

5-48

Rules Not Checked

Rule Description Comments

17.2
(Required)

Pointer subtraction shall only
be applied to pointers that
address elements of the same
array.

Not statically checkable
unless the pointer analysis
has been done

17.3
(Required)

>, >=, <, <= shall not be
applied to pointer types
except where they point to the
same array.

Not statically checkable
unless the pointer analysis
has been done

Structures and Unions

Rule Description Comments

18.2
(Required)

An object shall not be assigned
to an overlapping object.

Not statically checkable
unless the data dynamic
properties is taken into
account

18.3
(Required)

An area of memory shall
not be reused for unrelated
purposes.

"purpose" is functional design
issue.

Standard Libraries

Rule Description Comments

20.3
(Required)

The validity of values passed
to library functions shall be
checked.

Not statically checkable
unless all library function are
standardized

5-49

5 MISRA® Checker

5-50

6

Data Range Specifications

Overview (p. 6-2) Provides an overview of data range
specifications (DRS)

File Format (p. 6-3) Describes the file format for data
range specifications

Variable Scope (p. 6-5) Describes the scope of data range
variables

Reduce Oranges with DRS (p. 6-7) Describes how to use data range
specification to reduce orange checks

6 Data Range Specifications

Overview
The PolySpace™ Data Range Specifications (DRS) is an easy to use module
that helps developers achieves external constraints on global variables
without intrusion.

The associated option -data-range-specification option permits the setting of
specific data ranges for a list of given global variables. The point during the
analysis at which the range is applied to a variable is controlled by one of
the following mode keyword: init, permanentand globalassert. The option is
protected by a license.

• <filename> specificies the list global variables involved in the setting of
specific data ranges (See next section: “File format”).

• Only variables concerned by external linkage can benefit from the data
range setting (See next section: Variables scope).

6-2

File Format

File Format
Added to –data-range-specification option the file filename contains a list of
global variables with the below format:

variable_name val_min val_max <init|permanent|globalassert>

• Keyword init: variable is assigned to specific range, only at initialization
and keeps it until first write.

• Keyword permanent: variable is permanently assigned to specific range. If
the variable is assigned outside the specified range during the program no
warning is provided. Use the globalassert mode if you need a warning.

• Keyword globalassert: after each assignment an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

• Values val_min and val_max could be replaced by the keywords "min" or
"max" to denote the minimum and maximum values of the variable type.
Example for the long type: min and max correspond to -2^31 and 2^31-1
respectively.

• Hexadecimal values can be used: x 0x12 0x100 init

• Allowed column separators are: tab, comma, space or semi-column.

• To insert comments use shell style “#”.

Example (x, y, z, w, array and v are the name of global variables):

x 12 100 init # x is defined between [12;100] at
initialisation
y 0 10000 permanent # y is permanently defined between
[0,1000] even any possible assignment.
z 0 1 globalassert # z is checked in the range [0;1] after
each assignment
w min max permanent # w is volatile and full range on its
declaration type
v 0 max globalassert # v is positive and checked after each
assignment.
arrayOfInt -10 20 init # All cells are defined between [-10;20]
at initialisation

6-3

6 Data Range Specifications

s1.id 0 max init # s1.id is defined between [0;2^31-1] at
initialisation.
array.c2 min 1 init # All cells array[i].c2 are defined
between [-2^31;1] at initialisation

6-4

Variable Scope

Variable Scope
Variables concern external linkage, const variables and defined variables. It
could be extern variables with option -allow-undef-variables.

Static variables are not concerned by this option. The following table
summarizes possible uses:

init permanent globalassert comments

Integer Ok Ok Ok char, short, int,
enum, long and
long long

Reals Ok Ok Ok float, double and
long double

Volatile No effect OK Full range Only for integer
and reals

Structure field Ok No effect Ok Only for integer
and reals fields.

Structure field in
array

Ok No effect No effect Only when leaves
are “integer” or
reals. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for integer
and reals

Pointer No effect No effect No effect

Union field No effect No effect No effect

Complete
structure

No effect No effect No effect

Array cell No effect No effect No effect Example:
array[0],
array[10] …

6-5

6 Data Range Specifications

Note Every variable and associated data range will be written in the log file
at compilation time of a PolySpace™ analysis. If PolySpace software does not
support the variable, a warning message is displayed.

6-6

Reduce Oranges with DRS

Reduce Oranges with DRS

In this section...

“Perform Efficient Module Testing” on page 6-7

“Reduce Oranges with the —data-range-specification option” on page 6-8

Perform Efficient Module Testing
The data-range-specification add-on can be used to perform efficient static
testing of modules. This is accomplished by adding design level information
missing in the source-code. A module can be seen as a black box having the
following characteristic

• Input data are consumed

• Output data are produced

• Constant calibrations are being used during black box execution influencing
intermediate results and output data.

The PolySpace™ feature enables the user to define

• What is the nominal range for input data

• What is the expected range for output data

• What is the generic specified range for calibrations

It allows making one unique static analysis and performing two simultaneous
tasks

• answering the questions about robustness and reliability

• checking that the outputs are within the expected range, which is an
expected result of applying black-box tests to a module

In that context, several options have to be selected according to the type of
data, whether they are input, outputs, or calibrations.

6-7

6 Data Range Specifications

Type of Data DRS Mode Effect on Results Why? Oranges Selectivity

input
(entries)

permanent Reduces the number
of oranges, (compared
with a standard
Desktop analysis)

Input data which
are full range with
Desktop are now set
to a smaller range
with this option

↓ ↑

Outputs globalassert Increases the number
of oranges

More verification are
introduced into the
code, which means
more checks orange
and more green ones

↑ →

Calibration init Increases the number
of oranges, (compared
with a standard
Desktop analysis)

Data which are
constant with
Desktop are now
set to a wider range
with this option

↑ ↓

Now there is a derivate and specific usage of DRS which is to only focus on
reducing oranges. A detailed explanation on how that can be accomplished
is given in the next section

Reduce Oranges with the —data-range-specification
option
When verifying worst case robustness with PolySpace Desktop, data inputs
are set to their full range. Therefore, every operation on these inputs, even a
simple “one_input + 10” might produce an overflow, as the range of one_input
varies between the min and the max of the type.

By the use of DRS to restrict the range of “one-input” to its real functional
constraints found in the specification, design documents or models - lets say
“one-input” can vary between 0 and 10 - PolySpace software will definitely
know that

• “one_input + 100” will never overflow

6-8

Reduce Oranges with DRS

• the results will be between 100 and 110

This not only suppresses the local overflow orange, but also injects more
accuracy in the data which is propagated through the rest of the code.

It removes the oranges located in the red circle below.

Why Only on Modules
By removing the oranges introduced because data is set to it is worst case,
the orange decreases drastically, especially when used on units constituted of
small files or modules. We would not explain in this section why the number
of orange due to complexity can largely and negatively destroy the reduction
of the number of oranges introduced thanks to DRS, as this is covered in the
documentation, both in “Why Should there be an Optimum Size?” on page
9-71 and “Considering the effects of application code size.”

We will only explain here how DRS can reduce oranges on file or modules only.

6-9

6 Data Range Specifications

Example
Lets prove it by considering a simple example. Well suppose that the input
called “My_entry” can vary - in the real world - vary between 0 and 10. Two
analysis can be performed; One with data-range-specification (DRS), one
without.

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

• With “My_entry“ being full range, the
addition “+” is orange,

• the result “x” is equal to all values between
[min+100 max]

• Due to previous computations, x+1 can here
overflow too, making the addition “+”orange.

• With “My_entry” being bounded to [010], the
addition “+” is green

• the result “x” is equal to [100110]

• Due to previous computations, x+1 can NOT
overflow here, making the addition “+”green
again.

6-10

Reduce Oranges with DRS

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101 111]

6-11

6 Data Range Specifications

6-12

7

Using PolySpace™ Model
Link Products

Overview of PolySpace™ Model Link
Products (p. 7-2)

Provides an overview of the
PolySpace™ Model Link™ SL and
PolySpace Model Link TL products

Getting Started (p. 7-3) Describes how to use PolySpace
Model Link SL or PolySpace Model
Link TL products

Advanced Setup (p. 7-26) Describes how to configure advance
options

PolySpace™ Utilities (p. 7-35) Describes the blocks in the PolySpace
Utilities library

Code Generator Specific Information
(p. 7-43)

Provides information specific to
the PolySpace Model Link SL or
PolySpace Model Link TL code
generators

7 Using PolySpace™ Model Link Products

Overview of PolySpace™ Model Link Products
This chapter describes how to use PolySpace™ for Model-Based Design. The
PolySpace Model Link™ SL and PolySpace Model Link TL products allow you
to launch a PolySpace C verification from a Simulink® model associated with
Real-Time Workshop® Embedded Coder™ software, or dSPACE® TargetLink®

software.

PolySpace Model Link SL and PolySpace Model Link TL products provide
automatic error detection for code generated from Simulink models. It
consists of two principal components:

• A Simulink PolySpace library with associated blocks.

• A “Back to model” extension in the PolySpace Viewer that allows direct
navigation from a run-time error in the auto-generated code to the
corresponding block in the Simulink model.

7-2

Getting Started

Getting Started

In this section...

“Overview” on page 7-3

“Creating a Simulink® Model and Generating Production Code” on page 7-3

“Starting the PolySpace™ Analysis” on page 7-9

“Fixing an Error in the Design and the Simulink® Model” on page 7-13

“Base Workspace vs. PolySpace™ Data Ranges” on page 7-18

Overview
This consists of several steps, all detailed in this section

• Create a Simulink® model and generate production code (For more
information, see the Real-Time Workshop® Embedded Coder™ Getting
Started Guide)

• Start the PolySpace™ analysis

Creating a Simulink® Model and Generating
Production Code
To create a Simulink model and generate production code:

1 Open MATLAB®, then start Simulink software.

2 Create a Simulink model, similar to the one below.

7-3

7 Using PolySpace™ Model Link Products

Create the my_first_code model

3 Use the model explorer to edit the current configuration and set it, for
example, to Real-Time Workshop Embedded Coder software.

7-4

Getting Started

Open the model explorer

4 Set the System target file to Real Time Workshop Embedded Coder: ert.tlc.

7-5

7 Using PolySpace™ Model Link Products

Change the code generator to Real-Time Workshop® Embedded Coder™ software

5 Select the Report tab.

6 Select Create code-generation report, and select Code-to-model
Navigation.

7-6

Getting Started

Detail of the model explorer, enabling html generation

7 Select the Solver tab, then set the solver Type to Fixed-step, and the
Solver to discrete (no continuous states).

Choose fixed-step type

8 Select the Templates tab, then disable Generate an example main
program.

7-7

7 Using PolySpace™ Model Link Products

Templates tab in the model explorer

9 Select the Interface tab, then enable suppress error status in real-time
model data structure.

7-8

Getting Started

Interface tab in the model explorer

10 Click Apply.

11 Generate the production code.

Starting the PolySpace™ Analysis
To Start the PolySpace analysis:

1 Open the Simulink library browser.

2 Locate the PolySpace library and expand it.

7-9

7 Using PolySpace™ Model Link Products

The Simulink Library Browser is updated with the PolySpace Library
during the installation process. The library contains a common part called
PolySpace Utilities, and sections for each of the installed code generators
called PolySpace For “Code Generator” (see figure).

Simulink® Library Browser

3 Drag and drop the “PolySpace for RTW Embedded Coder” block.

To perform an analysis of your code using the default settings drag the
PolySpace for “Code Generator” block into the subsystem which is going to
be analyzed. If the code for the subsystem has not been generated already,
generate the code first. Then double click on the PolySpace for “Code
Generator” block.

7-10

Getting Started

Simulink® model with PolySpace™ launching block

4 Double-click on it

The PolySpace Analyzer Panel will then be displayed. Click on the “Start”
button to start the analysis. Note the subsystem field is automatically
populated with the name of the current subsystem and the results directory
is automatically set to results ”subsystem_name”. If more than one
subsystem is present in the model a subsystem selection dialog will be
presented.

7-11

7 Using PolySpace™ Model Link Products

Analysis Parameters dialog

A few messages will be displayed in the main MATLAB Command window:

PolySpace Technologies RTW Embedded Coder integration
Version 1.4
Preparing analysis
Locating generated source files:

ert_main.c ok (c:\MatLAB704\toolbox\rtw\rtwdemos
\rtwdemo_examplemain_ert_rtw)

rtwdemo_examplemain.c ok (c:\MatLAB704\toolbox\rtw\rtwdemos
\rtwdemo_examplemain_ert_rtw)
Generating DRS table

Get Parameters
Get Signals

Starting analysis

The exact messages that appear depend on the code generator being used.
However all the integrations follow same format:

• First, the name of code generator is displayed and then, the version of
the plug-in.

• Following this, is a list of source files, and finally the DRS (Data Range
Specification) information.

7-12

Getting Started

5 Click on Execute to proceed. The progress of the analysis can be followed in
the MATLAB Command window and later using the PolySpace Spooler if
remote launching has been enabled.

Note You can expect around 7 minutes for this model, i.e. for 4 lines of
generated C code. You can also count one hour for a 3000 block model, and
15 minutes for 2000 lines of generated code. Its not proportional, and these
seven minutes is the entry ticket to almost any analysis.

Fixing an Error in the Design and the Simulink® Model
After approximately 10 minutes, we have now some results to look at. We will
browse the results thanks to the PolySpace Viewer.

The PolySpace Viewer allows easy navigation with a right click to block in the
Simulink model. To browse your results:

1 Drag the “Open PolySpace Results” block from the Simulink PolySpace
Utilities library into the model.

7-13

7 Using PolySpace™ Model Link Products

Simulink® Library Browser, section PolySpace utilities

2 Double-click the block. This will start the PolySpace viewer with the
appropriate results.

7-14

Getting Started

Details of the PolySpace™ Viewer icon in Simulink® Model

After 10-30 seconds, depending on the PC, the PolySpace Viewer will open,
as shown below.

7-15

7 Using PolySpace™ Model Link Products

PolySpace™ Viewer

Note The mode of operation chosen in the case of this example is not
important. Indeed there are few orange that we will all review.

3 If you have enabled Remote Launching of the analysis you will need to
download your results from the server first using the PolySpace Spooler.
The tool will prompt you to do this if this has not already been done. Click
on CTRL-N to go to the next error.

7-16

Getting Started

Detail of an orange check in PolySpace™ Viewer

4 Click on the orange PolySpace diagnostic: we have here an overflow of the
two entries. PolySpace software assumes that the values for entries are
f.ull range, and their multiplication can overflow.

Overflow in the code

7-17

7 Using PolySpace™ Model Link Products

5 It is now time to get back to the model to understand what should be
fixed. Searching and clicking on the first underlined blue HTML link near
the check in the Source Code View will open the Simulink model and
highlight the block with the error. It looks like something equivalent to “
/* <Root>/Product.

Model with a highlighted block

6 It is now up to the developer to fix his defect in his model. For instance,
he may come to one of the following conclusions:

• It is a bug in the design. The developer should saturate the output,
providing this functionally makes sense bound the entries in the model,
by adding blocks which will test the input values, and bound them
accordingly.

• Its a bug in the specifications. The developer should bound the entries,
by giving them a range in Simulink software that PolySpace verification
can take the ranges into account and turns the code green.

Base Workspace vs. PolySpace™ Data Ranges
After having browsed a model, the developer has identified a block whose
signal ranges is not the expected one.

7-18

Getting Started

• If its block is supposed to be robust against this range, it is a design bug.
Should the previous block be saturated? Should the signal be bounded
with a “switch” block? It is up to the developer to decide the appropriate
change in the model

• If the range is an input range of the model, the developer may wish to give
this information to the Simulink model, so that PolySpace tools can use
that range as an entry.my

Prerequisites
Have signals as ExportedGlobal.

Details of a signal

Update Range of Signals
To update your signal ranges:

1 Open the “model explorer”, and go into the “Base Workspace” tab

2 Create a signal “my_entry1” & “my_entry2.”

3 Bound it to -15 to 15. Specify its storage class to ExportedGlobal

7-19

7 Using PolySpace™ Model Link Products

Signal in the “Base Workspace”

4 Model with signals on entries:

7-20

Getting Started

Model with signals my_entry1 and my_entry2 as “ExportedGlobal”.

Re-Generate Code and Launch the PolySpace™ Analysis Again
To re-generate the code and relaunch the PolySpace analysis:

1 Re-generate the code

The entries are no longer part of a structure, they are separated global each.

7-21

7 Using PolySpace™ Model Link Products

Html report generator from Real-Time Workshop® Embedded Coder™ Software

2 Double-click on the PolySpace box:

3 Update the results folder name, and set it to
“results_my_first_code_bounded.”

4 Update the subsystem name, and set it to my_first_code_bounded.

7-22

Getting Started

Details of the results folder

5 Start the analysis:

6 Check the obtained reliability of the model using to PolySpace Viewer:

a Open the PolySpace Viewer by double-clicking on the
icon

7-23

7 Using PolySpace™ Model Link Products

Model with a PolySpace™ viewer menu

b Examine the generated files in the PolySpace Viewer:

7-24

Getting Started

Detail of generated files viewed in PolySpace™ Viewer

It is all green. The code confirms that no Run Time Error is present in
the model.

Can we find more bugs in that Model?

• To answer this question, we need to now more about the tool

• Which windows of PolySpace Viewer contain which information?

• Which Colors hide which messages?

• How to find bugs thanks to PolySpace Viewer?

• Please refer to the Chapter 8, “Results Review” for more information.

7-25

7 Using PolySpace™ Model Link Products

Advanced Setup

In this section...

“Hand-written Code” on page 7-26

“Target Production Environment” on page 7-28

“Creating a PolySpace™ Configuration File Template” on page 7-30

“Using the PolySpace™ Blocks Available in the Simulink® Library” on page
7-33

Hand-written Code
Files such as S-function wrappers are, by default, not part of the PolySpace™
analysis. They should be added manually.

To add a file manually:

1 When starting the PolySpace analysis

, browse and add c-files to your analysis:

7-26

Advanced Setup

2 Select additional files by ticking “Enable additional file list,” then click
on “Select Files”.

A C File browser appears to add files to the PolySpace analysis.

7-27

7 Using PolySpace™ Model Link Products

3 Select the appropriate c file and then start the analysis.

Target Production Environment
In Simulink® software, you need to configure the target and cross-compiler
specificities.

These parameters include:

• Size of the types for char, short, int (see Hardware implementation of the
model explorer)

Target selection in Simulink® Configuration Parameters

• Cross compiler flag (-D), and library include (-I), implicitly defined when -
for instance - the cross compiler is setup via the “mex -setup” command.

7-28

Advanced Setup

Cross compiler settings in MATLAB® Command Window

PolySpace settings work exactly the same way, you will need to perform the
following tasks (they will be detailed step by step in the next sections).

1 define the same parameters for your cross compiler and target.

2 save this in a template PolySpace configuration file and set this template to
be the default configuration file for every PolySpace analysis.

Why does this matter?

• For the PolySpace verification, an overflow on an integer type does not
mean the same when the size of an integer is 16 bits or 32 bits.

7-29

7 Using PolySpace™ Model Link Products

• PolySpace software needs the cross compiler header files, as they contain
definitions of types, macros, used by the application, whether the
application made of generated code or hand written code.

For more information, please refer to Chapter 3, “Analysis Setup”, and
Chapter 10, “Options Description” in this guide.

Creating a PolySpace™ Configuration File Template
To Create a configuration file template:

1 In the Simulink library browser, locate the PolySpace library, and expand it.

7-30

Advanced Setup

2 Drag the PolySpace project configuration block to your
Simulink model.

3 Double-click the block. This will bring a pop-up window.

Template selection

4 Select the first template in the list.

This will open the PolySpace interface to customize the target and cross
compiler.

7-31

7 Using PolySpace™ Model Link Products

Target and cross compiler settings in PolySpace™ tools

5 The “target” option defined the size of types. You can configure a custom
target by selecting “mcpu (advanced)” at the bottom of the drop-down list

6 You can configure cross compiler settings by clicking on the “-D” options.

Note MATLAB_MEX_FILE is a directive option that is needed when
the lcc cross-compiler is specified. Defining templates can be use in all
subsequent analysis.

7 Save the configuration file and close the interface.

7-32

Advanced Setup

8 Copy the file in <<matlabroot>>/polyspace/cfg directory.

9 Rename it in my_cross_compiler.cfg (It could be any other name).

10 Type in the MATLAB® command window:
PolySpaceSetTemplateCFGFile('C:\MATLAB\R2006b\polyspace\cfg\my_cross_comp

Create a template configuration file

This configuration file can now be used as a template for all subsequent
analysis.

Using the PolySpace™ Blocks Available in the
Simulink® Library
The PolySpace Viewer allows easy navigation with a right click to block in
the Simulink model.

Drag the “Open PolySpace Results” block from the Simulink PolySpace
Utilities library into the model and then double click block. This will start
a new MATLAB session in automation mode, open the model and start the
viewer.

You can chose the Methodological assistant to review all colors in the Viewer
by selecting the “Assistant” mode. The “Back to model” consists in searching
the above close relative HTML link which will open the Simulink model and
highlight the block with the error.

7-33

7 Using PolySpace™ Model Link Products

Note If you have enabled Remote Launching of the analysis you will need to
download your results from the server first using the PolySpace Spooler. The
tool will prompt you to do this if this has not already been done.

7-34

PolySpace™ Utilities

PolySpace™ Utilities

In this section...

“Overview of PolySpace™ Utilities” on page 7-35

“Open PolySpace™ Results” on page 7-36

“PolySpace Enable COM Server” on page 7-36

“PolySpace™ Menu” on page 7-37

“PolySpace™ Project Configuration” on page 7-38

“Archives Files Produced for the PolySpace™ Analysis” on page 7-39

“PolySpace™ Commands Available in Batch Mode as M-Functions” on page
7-41

Overview of PolySpace™ Utilities
The PolySpace™ Utilities section consists of four blocks:

• Open PolySpace Results

• PolySpace Enable COM Server

• PolySpace Menu

• PolySpace Project Configuration

They can either be run directly from the Simulink® library browser or dragged
into a Simulink model (see next figure).

7-35

7 Using PolySpace™ Model Link Products

PolySpace™ Utilities

Open PolySpace™ Results
This option allows the results of the PolySpace analysis to be viewed and easy
navigation with a right click from the PolySpace results to an element in
the Simulink model.

PolySpace Enable COM Server
This block is called by default with the “Open PolySpace Results” block. This
block is mandatory when The PolySpace Viewer has been opened outside a
Simulink session to enable the feature “Back To Model” inside the Viewer.

7-36

PolySpace™ Utilities

PolySpace™ Menu
The menu consists of two sections, the first for managing the analysis and the
second for configuring the tools and documentation.

PolySpace™ Menu

Analysis Management
Analysis management contains the following options:

• Configure project – Opens the PolySpace configuration dialog, for more
information see next section.

• Launch spooler – Opens the PolySpace spooler. For more information,
see Chapter 2, “Getting Started”.

• Open results – Opens the PolySpace Viewer with the last available
results. If the analysis has been done on the server, downloading them first
is required before clicking on this button. It is recommended to not change
the proposed directory during download.

• Stop local analysis – Stops an analysis running on the local machine. If
the analysis has been remotely spooled this option will only work during
the compilation phase before the analysis is sent to the server. However,
you can click the Launch spooler button and stop the analysis from the
spooler dialog.

7-37

7 Using PolySpace™ Model Link Products

General Options
Tools & Documentation contains the following options:

• Don’t use automatic stubs – Enables/disables PolySpace automatic
stubbing of certain blocks behavior. This behavior depends on the code
generator being used and is described in the documentation specific to
your code generator below.

• Don’t check solver – Disables the check of the solver used with Real-Time
Workshop® Embedded Coder™ software.

PolySpace™ Project Configuration
Clicking on “Project configuration” starts a cut-down PolySpace launcher
(see next figure).

Next figure allows the configuration of the PolySpace project. For example
setting items such as the processor type the code has been generated for,
Compilation flags etc. The first time the tool is run a template configuration
is created with the following options set:

-voa
-continue-with-red-error
-continue-with-existing-host
-ignore-float-rounding
-OS-target no-predefined-OS
-allow-ptr-arith-on-struct
-results-dir results

Other options are automatically set depending on the code generator being
used. See the documentation for specific code generators below for more
information.

7-38

PolySpace™ Utilities

Project Configuration Interface

Archives Files Produced for the PolySpace™ Analysis
For further information, here is a list of files used during a PolySpace analysis:

Template files located in MATLAB® installation
directory\polyspace\
When an analysis is first performed the tool copies the following two files into
the local model directory. On subsequent analyses the files are not copied
again meaning it is OK to model the copies in the model directory.

• cfg\templateEmbeddedCoder.cfg — This file is copied to the
model_directory/model_name-polyspace.cfg at the start of the first analysis
of the model. It contains the template PolySpace configuration settings to
support the TargetLink® code generator. The templateTargetLink.cfg file
can be updated with site specific settings, to ease analysis of new models.

7-39

7 Using PolySpace™ Model Link Products

A MATLAB® command exists to change the name/location of the file which
contains the template configuration:

PolySpaceSetTemplateCFGFile(config_filename)

This is most useful when the PolySpace analysis is started as part of an
automated process. Here the process would set the template configuration
file to use, erase the local copy in the model directory and then start the
PolySpace analysis.

• stub\ppcom_ec.sh — This file is copied to the model_directory/ppcom_ec.sh
at the start of the first analysis of a model. The file is not recopied for
subsequent analyses. It is used to stubbing of lookup tables (only of
interpolation, not extrapolation) types to improve the accuracy of analysis
results.

Files used in the model directory

• model-name-polyspace.cfg — As mentioned above
this file is copied from the MATLAB installation
directory\polyspace\cfg\templateEmbeddedCoder.cfg file the first time
an analysis is run on a model. It is subsequently modified by the Project
Configuration block, or the Configure button in the option in the PolySpace
Analyzer dialog. It contains the PolySpace Verifier settings for analyzing
the current model.

• ppcom_ec.sh — The PolySpace Embedded Coder post pre-processing
command.

• polyspace_additional_file_list.txt — This file is created if the
Advanced option, Select Files is used in the PolySpace Analyzer dialog
box. This option allows files that are not part of the model to be analyzed
together with the model. For example these files could contain custom
lookup table code, custom stubs, device driver code etc. The Enable
additional file list option needs to be set together with configuring the
list of extra files to analyze.

7-40

PolySpace™ Utilities

Auto-generated files in the model directory
These files are generated from the model for each analysis when it is started,
and do not need archiving:

• model name_drs.txt — The drs information extracted automatically
from the model.

• polyspace_include_dir_list.txt — List of compilation include
directories extracted from the mode.

• polyspace_file_list.txt — List of file contained in the model to analyze

• model name_last_parameter.txt — The last set of parameters used in
the PolySpace Analyzer dialog box.

PolySpace™ Commands Available in Batch Mode as
M-Functions
You can also run the following commands from the command line.

Command Description Icon

PolySpaceForEmbeddedCoder Launch PolySpace
verification on code
generated by Real-Time
Workshop Embedded Coder
software

PolySpaceForTargetLink Launch PolySpace on code
generated by TargetLink

PolySpaceSpooler Inspect the queue of the
remotely sent analysis over
the server

7-41

7 Using PolySpace™ Model Link Products

Command Description Icon

PolySpaceViewer Launch PolySpace Viewer

PolySpaceSetTemplateCFGFile Select a template file in
batch mode

PolySpaceGetTemplateCFGFile Get the currently selected
template file (empty by
default)

PolySpaceReconfigure In case of a PolySpace
release update without
enabling the MATLAB
plug-in

Example with EmbeddedCoder:

Suppose that you open a Simulink model with the name example.mdl.

Enter PolySpaceForEmbeddedCoder(example') in the MATLAB Command
window.

The analysis starts.

7-42

Code Generator Specific Information

Code Generator Specific Information

In this section...

“PolySpace™ Model Link™ SL Product” on page 7-43

“PolySpace™ Model Link™ TL Product” on page 7-44

PolySpace™ Model Link™ SL Product
The PolySpace™ Model Link™ SL product has been tested with Real-Time
Workshop® Embedded Coder™ software — see the Installation Guide for
more information.

Subsystems
A dialog will be presented after clicking on the PolySpace for Embedded Coder
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list. The subsystem list is generated from the
directory structure from the code that has been generated.

Default Options
The following default options are set by the tool:

-I path to source code
-desktop
-D PST_ERRNO
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

Note matlabroot is the MATLAB® tool installation directory.

7-43

7 Using PolySpace™ Model Link Products

Data Range Specification
The tool automatically creates PolySpace Data RangeSpecification (DRS)
information using the MATLAB workspace. This DRS information is used to
initialize each global variable to the range of valid values as defined by the
min-max information in the workspace.

Main sources of information are Simulink.signals and Simulink.parameters.

Code Generation Options
The Real-Time Workshop® configuration parameters settings must be
configured as follows for optimum use of the tool.

Note These are the options recommended by The MathWorks for generating
target code.

• Real Time Workshop tab:

a Select “Generate HTML report” and set “Include hyperlinks to model”.
Note that if this is not set navigation from PolySpace results to the
model will not work.

b Set the system target file to be an appropriate ert.tlc (use the browse
button to locate). This is an indication that the code generator is
Real-Time Workshop Embedded Coder software (and not just Real-Time
Workshop software, used for rapid prototyping).

c Set the Solver parameters “Type” to Fixed-step, and “Solver to discrete
(no continuous state). It illustrates that the code has been generated for
a target, and not for a simulation based on continuous timing.

• Optionally, on “Interface panel” tab, make sure that “Generate reusable
code” is unselected. Setting this option will generate more warnings in
the PolySpace results.

PolySpace™ Model Link™ TL Product
The PolySpace Model Link TL product has been tested with the some release
of the dSPACE® Data Dictionary version and TargetLink® Code Generator -
see the Installation Guide for more information.

7-44

Code Generator Specific Information

As the PolySpace Model Link TL product extracts information from the
dSPACE Data Dictionary remember to regenerate the code before performing
a PolySpace analysis. This ensures that the Data Dictionary has been
correctly updated.

Subsystems
A dialog will be presented after clicking on the PolySpace for TargetLink
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list.

Data Range Specification
The tool automatically creates PolySpace Data RangeSpecification (DRS)
information using the dSPACE Data Dictionary for each global variable. This
DRS information is used to initialize each global variable to the range of
valid values as defined by the min-max information in the data dictionary.
This allows PolySpace software to model every value that is legal for the
system during its analysis. Further the Boolean types are modeled having a
minimum value of 0 and a maximum of 1. Defining the min-max information
carefully in the model can help PolySpace verification to be more precise
significantly because only range of reels values are analyzed.

DRS cannot be applied to static variables. Therefore, the compilation flags
-Dstatic= is set automatically. It has the effect of removing the static keyword
from the code. If you have a problem with name clashes in the global name
space you may need to either rename one of or variables or disable this option
in PolySpace configuration.

Lookup Tables
The tool by default provides stubs for the lookup table functions. This
behavior can be disabled from the PolySpace menu — see “PolySpace™ Menu”
on page 7-37 for more information. The dSPACE data dictionary is used to
define the range of their return values. Note that a lookup table that uses
extrapolation will return full range for the type of variable that it returns.

Default Options. The following default options are set by the tool:

-I path to source code
-desktop

7-45

7 Using PolySpace™ Model Link Products

-D PST_ERRNO
-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot/matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool
installation directories respectively.

Code Generation Options
From the TargetLink Main Dialog, it is recommended to set the option “Clean
code” and deselect the option “Enable sections/pragmas/inline/ISR/user
attributes”.

When installing the PolySpace Model Link TL product, the tlcgOptions
variable has been updated with ’PolyspaceSupport’, ’on’ (see variable in
’C:\dSPACE\Matlab\Tl\config\codegen\tl_pre_codegen_hook.m’ file).

7-46

8

Results Review

Basics: Prerequisites to Reviewing
PolySpace™ Results (p. 8-2)

Provides an overview of PolySpace™
results

Colored Source Code for C (p. 8-14) Provides specific examples of C
checks

8 Results Review

Basics: Prerequisites to Reviewing PolySpace™ Results

In this section...

“Overview” on page 8-2

“Grey Follows Red” on page 8-3

“What is the Message and What does it Mean?” on page 8-4

“What is the C Explanation” on page 8-5

“Specific Check Analysis” on page 8-7

Overview
Once PolySpace™ software has completed an analysis and there are graphical
results available, there will be colored entries shown in the source code. This
section explains how to understand the implications of the four colors:

• Red shows run-time errors which will occur every time that piece of code
is executed;

• Grey shows code which is unreachable (dead code);

• Orange is a warning;

• Green shows safe instructions: these are code sections which can never
lead to a run time error.

This section explains the steps necessary to analyze a result of any color.
There are four core rules to bear in mind throughout this section, viz.

• The next instruction is reached providing no Run Time Error was met
at the previous one.

• Each Run Time Error implies a “core dump” for PolySpace. The
corresponding execution is considered to have stopped, even if the run
time execution of the code might not. SO - red checks will be followed by
grey checks, and orange checks only propagate the green parts through
to subsequent checks.

8-2

Basics: Prerequisites to Reviewing PolySpace™ Results

• You should focus on the message given by PolySpace, and try not to jump
to false conclusions. You must explain the color of a check step by step,
until you find the root cause.

• You should focus on an explanation by examining the code, and try not to
be influenced by knowledge of what the code actually does.

Grey Follows Red
This section explains grey checks follow red ones, and hence howgreen
checks are propagated out of orange ones. In the example below, consider
the explanation of

• the grey checks after the red in the red function;

• and the green checks relating to the array.

void red(void)
{
int x;
x = 1 / x ;
x = x + 1;
}

extern int Read_An_Input(void);
void propagate(void)
{
int X;
int y[100];
X = Read_An_Input();
y[X] = 0; // [array index within bounds]
y[X] = 0;

}

Consider each line of code for:

The red function:

• When PolySpace divides by X, it has not been initialized. Therefore the
corresponding check (Non Initialized Variable) on X is red;

• As a result all possible execution paths are stopped, because they all
produce an RTE.

The propagate function:

• X is assigned the return value of Read_An_Input. After this assignment,
X ~ [-2^31, 2^31-1].

8-3

8 Results Review

• At the first array access, an “out of bounds” error is possible since X can be
equal to (say) -3 as well as 3;

• Subsequently, all conditions leading to an RTE are assumed to have
been truncated - they are no longer considered in the analysis. So on the
following line, the executions for which X ~ [-2^31, -1] and [100, 2^31-1]
are stopped;

• Consequently, at the next instruction, X ~ [0, 99];

• Hence at the second array access, the check is green because X ~ [0, 99].

Summary
Green checks are propagated out of orange ones.

Note When writing manual stubs, you can use this property of PolySpace
software to restrict data input values: See how to assign ranges of variables
in “Reduce the cloud of points” on page 9-62.

What is the Message and What does it Mean?
PolySpace numbers the checks it makes using the same sequence as that
followed during the execution of the code.

Consider the instruction x++;

PolySpace first checks for a potential NIV (Non Initialized Variable) for x,
then checks the potential OVFL (overflow) - which mimics the execution
sequence. An awareness of such sequences will help you to understand the
message presented by PolySpace, and will help you to work out what that
message implies.

Consider the orange NIV on x in the test:

if (x > 101);

You might conclude that the PolySpace analysis has not kept track of the
value of x. However, studying the context in which the check is made will help
you to understand it better.

8-4

Basics: Prerequisites to Reviewing PolySpace™ Results

extern int read_an_input(void);

void main(void)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) // [orange on the NIV : non initialised variable]
{ x++; } // grey code

}

Explanation
Using the viewer, you can see the category of each check by clicking on it.
When an orange check is considered, any value of a variable which would
result in an RTE is not considered further. However, as the example NIV
(Non Initialized Variable) shows, any value which does not cause the RTE is
considered for analysis on subsequent lines.

The correct interpretation of these analysis results might be that if x has been
initialized, the only possible value for it is 100. Thus x can never be initialized
and greater than 101, so the rest of the code is grey. Such a conclusion might
be different from that reached in haste!

Summary

• x> 100)" does NOT mean that PolySpace doesn’t know anything about x.

• "(x> 100)" DOES means that PolySpace doesn’t know whether X has been
initialized.

The first rules of reviewing results are:

• Focus on the message given by PolySpace Verifier,

• and try not to jump to conclusions.

What is the C Explanation
Results can only be explained based on the code analyzed, so be wary of
considering:

8-5

8 Results Review

• a physical action from the environment in which the code is intended to
operate;

• a particular configuration which is not part of the analysis;

• or any reason other than the code itself.

Remember, all the tool deals with is the C code submitted to it!

Consider the example below, paying particular attention to the dead (grey)
code following the "if" statement.

extern int read_an_input(void);

void main(void)
{
int x;
int y[100];
x = read_an_input();
y[x] = 0; // [array index within bounds]
y[x-1] = (1 / X) + X ;
if (x == 0)
y[x] = 1; // grey code on this line

}

You can see that

• the line containing the access to the y array is unreachable;

• so the test to assess whether x is equal to 0 is always false;

• the initial conclusion is that "the test is always false". Now, it would
be easy to jump to the conclusion that this results from input data which is
always different from 0. However, Read_An_Input can be any value in the
full integer range, so this is not the right explanation.

So consider the execution path leading to the grey code

• The orange check on the array access (y[x]) will truncate any execution
path leading to a run time error, meaning that subsequent lines will be
dealing with x ~ [0, 99]

8-6

Basics: Prerequisites to Reviewing PolySpace™ Results

• The orange check on the division will also truncate all executions paths
that lead to a run time error so that in our example, all instances where
x is equal to 0 are stopped. For the code execution path after the orange
division sign, x ~ [1; 99];

• Thus x is never equal to 0 at this line - and hence, the array access is
green (y(x- 1).

Summary
In this example, all results are located in the same procedure. But by using
the call tree, the same process can easily be followed even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called
by" call tree - and concentrate on explaining the issues by reference to
the code alone!

Specific Check Analysis

• “PolySpace Memorizes the Relationships Between Variables” on page 8-7

• “The Purpose of the -continue-with-red-error Option.” on page 8-9

• “Default Settings, -continue-with-red-error and Side Effects” on page 8-11

• “Why There Might be 2 Distinct Colors in a while/for Statement. ” on page
8-12

PolySpace Memorizes the Relationships Between Variables

Abstract. Understand that a red error can hide a bug which occurred on
previous lines.

8-7

8 Results Review

10 int main(void)
11 {
12 int x,old_x;
13
14 x = read_an_input();
15 old_x = x;
16
17 if (x<0 || x>10)
18 return 0;
19
20 f(x);
21
22 x = 1 / old_x; // division is red
23
24 }

1 double sqrt(double);
2 int read_an_input(void);
3
4 void f(int a)
5 {
6 int tmp;
7 tmp = sqrt(0-a);
8 }
9

Explanation 1.

• When old_x is assigned to x (15 old_x = x;), PolySpace memorizes two pieces
of information:

- x and old_x are equivalent to the whole range of an integer: [-2^31 ;
2^31-1];

- and x and old_x are equal.

• After the "if" clause (17 if (x<0 || x>10)), X is equivalent to [0; 10]. Because
x and old_x are equal, old_x is equivalent to [0;10] as well, because
otherwise the return statement would have been executed;

• When X is passed to "F" (20 f(x);), the only possible valid conclusion for
sqrt is that x is equal to 0. All other values lead to a run time exception
(7 tmp = sqrt(0-a););

• Back to line 22, because x and old_x are equal, old_x is also equal to 0.

Explanation 2.

• Supposing that Verifier exits immediately when encountering a run time
error, let’s introduce a print statement that will write to the standard

8-8

Basics: Prerequisites to Reviewing PolySpace™ Results

output after the "f" procedure has been called (20 f(x);), to show the current
value of x and old_x;

• The only possibility of reaching the print statement is when X is equal to
0. So, if "x" is equal to 0, old_x must have been assigned to 0 too - which
makes the division red.

Summary. PolySpace builds relationships between variables and propagates
the consequence of these relationships backwards and forwards.

The Purpose of the -continue-with-red-error Option.
This option is used to deal with two primary circumstances.

• A red error appears in code which was expected to be dead code.

• A red error appears which was expected, but the analysis is required to
continue.

PolySpace performs an upper approximation of variables. Consequently, it
may be true that PolySpace analyses a particular branch of code as though
it was accessible, despite the fact that it could never be reached during
“real life” execution. In the example below, there is an attempt to compare
elements in an array, and PolySpace is not able to conclude that the branch
was unreachable. PolySpace may conclude that an error is present in a line
of code, even when that code cannot be reached.

Consider the following figure. As a result of imprecision, each color shown
can be approximated by a color immediately above it in the grid. It is clear
that green or red checks can be approximated by orange ones, but the
approximation of grey checks is less obvious.

8-9

8 Results Review

During PolySpace analysis, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Grey code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

• by an empty super set;

• by a non-empty super set, members of which may generate checks of any
color.

And hence PolySpace cannot be guaranteed to find all dead code in an analysis.

However, there is no problem in having grey checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example.

if
(condition)

then
action_producing_a_red;

After the "if" statement, the only way execution can continue is if the
condition is false; otherwise a red check would be produced. Therefore,
after this branch the condition is always false. For that reason, the

8-10

Basics: Prerequisites to Reviewing PolySpace™ Results

-continue-with-red-error option is provided to allow code analysis to continue,
even with a specific error.

Remember that this propagates values throughout your application. None
of the execution paths leading to the RTE will continue after the error and
if the red checkis a real problem rather than an approximation of a grey
check, then the analysis will not be representative of how the code will behave
when the red error has been addressed.

The -continue-with-red-error option is applicable in this example case.

1 int a[] = { 1,2,3,4,5,7,8,9,10 };
2
3
4 void main(void)
5 {
6 int x=0;
7 i nt tmp;
8
9
10 if (a[5] > a[6])
11 tmp = 1 /x;
12 }

Default Settings, -continue-with-red-error and Side Effects
This section explains why when a red error has been found the analysis
continues but some cautions need to be taken. Consider this piece of code:

8-11

8 Results Review

int *global_ptr;
int variable_it_points_to;

void big_red(void)
{
int r;
int my_zero = 0;
if (condition==1)

r = 1 / my_zero; // red ZDV
...
... // hundreds of lines
global_ptr = &variable_it_points_to;
other_function();
}

void other_function(void)
{
if (condition==1)

*global_ptr = 12;
}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for analysis, and
the propagation of the data ranges need several iterations (or integration
levels) to complete. That effect can be observed by examining the color of the
checks on completion of each of those levels. It can sometimes happen that:

• PolySpace will detect grey code which exists due to a terminal RTE which
will not be flagged in red until a subsequent integration level.

• PolySpace flags a NTC in red with the content in grey. This red NTC is the
result of an imprecision, and should be grey.

Suppose that an NTC is hard to understand at given integration level (level 4):

• If other red checks exist at level 4, fix them and restart the analysis

• Otherwise, look back through the results from each previous level to see
whether other red errors can be located. If so, fix them and restart the
analysis

Why There Might be 2 Distinct Colors in a while/for Statement.
It is sometimes true that inside the condition of a loop, a check is green then
red.

8-12

Basics: Prerequisites to Reviewing PolySpace™ Results

Consider the following example.

1 void main(void)
2 {
3 int tab[2] = { 1, 2 };
4 int index = 0;
5 while (tab[index]) { index--; }
// the colour of "array index within bounds" is
// first green
// than red
6 }

Clicking on the tab variable (line 5) in the Viewer will reveal the following

Error : pointer is outside its bounds <= then red
variable is initialized
Pointer is initialized
Pointer is initialized
Pointer is initialized
Pointer is initialized
pointer is within its bounds <= first green
Unreachable check : NIV

Now, visualize the C loop as having been transformed into a label and a goto

if (not(tab[index]) goto end;
// first location of the check is green
loop_begin:
index = index-1;

if (tab[index]) goto loop_begin;
// second location of the check is red
end:

So, the second color represents the second pass through the loop, and (in
the example) should be investigated.

8-13

8 Results Review

Colored Source Code for C

In this section...

“Illegal Pointer Access to Variable or Structure Field: IDP” on page 8-15

“Array Conversion Must Not Extend Range: COR” on page 8-16

“Array Index Within Bounds: OBAI” on page 8-17

“Initialized Return Value: IRV” on page 8-18

“Non-Initialized Variables: NIV/NIVL” on page 8-19

“Non-Initialized Pointer: NIP” on page 8-20

“Power Arithmetic: POW” on page 8-20

“User Assertion: ASRT” on page 8-21

“Scalar and Float Underflows: UNFL” on page 8-23

“Scalar and Float Overflows: OVFL” on page 8-23

“Float Underflows and Overflows: UOVFL” on page 8-24

“Scalar or Float Division by Zero: ZDV” on page 8-28

“Shift Amount in 0..31 (0..63):SHF” on page 8-28

“Left Operand or Left Shift is Negative: SHF” on page 8-29

“Function Pointer Must Point to a Valid Function: COR” on page 8-30

“Wrong Type for Argument: COR” on page 8-31

“Wrong Number of Arguments: COR” on page 8-32

“Wrong Return Type of a Function Pointer: COR” on page 8-33

“Wrong Return Type for Arithmetic Functions: COR” on page 8-33

“Pointer Within Bounds: IDP” on page 8-34

“Non Termination of Call or Loop” on page 8-49

“Unreachable Code: UNR” on page 8-58

“Value on Assignment: VOA” on page 8-60

“Inspection Points: IPT” on page 8-62

8-14

Colored Source Code for C

Illegal Pointer Access to Variable or Structure Field:
IDP
This is a check to establish whether in the dereferencing of an expression of
the form ptr+i, the variable/structure field initially pointed to by ptris still the
one accessed. See ANSI C standard ISO/IEC 9899 section 6.3.6.

Consider the following example.

1 int a;
2
3 struct {
4 int f1;
5 int f2;
6 int f3;
7 } S;
8
9 void main(void)
10 {
11 volatile int x;
12
13 if (x)
14 *(&a+1) = 2; // IDP ERROR: &a +1 doesn't point to a any longer
15 if (x)
16 *(&S.f1 +1) = 2; // IDP ERROR: you are not allowed to access f2
like this
17 }

According to the ANSI C standard, it is not permissible to access a variable
(or a structure field) from a pointer to another variable. That is, ptr+i may
only be dereferenced if ptr+i is the address of a subpart of the object pointed
to by ptr(such as an element of the array pointed to by ptr, or a field of the
structure pointed to by ptr).

For instance, the following code is correct because the length of the entity
pointed to by ptr_sreflects the full structure length of My_struct (at line 11):

1 typedef struct {
2 int f1;
3 int f2;
4 int f3;

8-15

8 Results Review

5 } My_Struct;
6
7 My_Struct s = {1,2,3};
8
9 int main(void)
10 {
11 My_Struct *ptr_s = &s;
12
13 // change to f2 field
14 *((int *)&s +1) = 2; // Correct evaluation
15
16 return 0;
17 }

Array Conversion Must Not Extend Range: COR
This is a check to establish whether a small array is mapped onto a bigger one
through a pointer cast. Consider the following example.

1
2 typedef int Big[100];
3 typedef int Small[10];
4 typedef short EquivBig[200];
5
6 Small smalltab;
7 Big bigtab;
8
9 void main(void)
10 {
11 volatile int random;
12
13 Big * ptr_big = &bigtab;
14 Small * ptr_small = &smalltab;
15
16 if (random) {
17 Big *new_ptr_big = (Big*)ptr_small; // COR ERROR: array
conversion must not extend range
18 }
19 if (random) {
20 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;
21 Small *ptr_new_small = (Small*)ptr_big; // Conversion

8-16

Colored Source Code for C

verified
22 }
23 }

In the example above, a pointer is initialized to the Big array with the address
of the Small array. This is not legal since it would be possible to dereference
this pointer outside the Small array. Line 20 shows that the mapping of
arrays with same size and different prototypes is acceptable.

Array Index Within Bounds: OBAI
This is a check to establish whether an index accessing an array is compatible
with the length of that array. Consider the following example.

1
2 #define TAILLE_TAB 1024
3 int tab[TAILLE_TAB];
4
5 void main(void)
6 {
7 int index;
8
9 for (index = 0; index < TAILLE_TAB ; index++)
10 {
11 tab[index] = 0;
12 }
13 tab[index] = 1; // OBAI ERROR: Array index out of bounds [0..1023]
14 }

Just after the loop, index equals SIZE_TAB. Thus tab[index] = 1 overwrites
the memory cell just after the last array element.

An OBAI check can also be localized on a + operator, as another example
illustrates.

1 int tab[10];
2
3 void main(void)
4 {
5 int index;
6 for (index = 0; index < 10 ; index++)

8-17

8 Results Review

7 *(tab + index) = 0;
8
9 *(tab + index) = 1; // OBAI ERROR: Array index out of bounds
10 }

Note that the message associated with the check OBAI gives always the range
of the array: Array index out of bounds [0..1023]

Initialized Return Value: IRV
This is a check to establish whether a function returns an initialized value.
Consider the following example.

1
2 extern int random_int(void);
3
4 int reply(int msg)
5 {
6 int rep = 0;
7 if (msg > 0) return rep;
8 }
9
10 void main(void)
11 {
12 int ans;
13
14 if (random_int())
15 ans = reply(1); // IRV verified: function returns an
initialised value
16 else if (random_int())
17 ans = reply(0); // IRV ERROR: function does not return an
initialised value
18 else
19 reply(0); // No IRV checks because the return value
is not used
20
21 }
22
23

8-18

Colored Source Code for C

Variables are often initialized using the return value of functions. However, in
the above example the return value is not initialized for all input parameter
values. In this case, the target variable will not be always be properly
initialized with a valid return value.

Non-Initialized Variables: NIV/NIVL
This is a check to establish whether a variable is initialized before being
read. Consider the following example.

1
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int x,i;
7 double twentyFloat[20];
8 int y = 0;
9
10 if (random_int()) {
11 y += x; // NIV ERROR: Non
Initialized Variable (type: int 32)
12 }
13 if (random_int()) {
14 for (i = 1; i < 20; i++) {
15 if (i % 2) twentyFloat[i] = 0.0;
16 }
17 twentyFloat[2] = twentyFloat[4] + 5.0; // NIV Warning. only odd
indexes are initialized.
18 }
19 }

The result of the addition is unknown at line 11 because x is not initialized
(UNR unreachable code on "+" operator).

In addition, line 17 shows how PolySpace™ software prompts the user to
investigate further (by means of an orange check) when all cells have not
been initialized.

8-19

8 Results Review

Note Associated to each message which concerns a NIV check, PolySpace
software gives the type of the variable like the following examples: (type:
volatile int32), (type: int 16), (type: unsigned int 8), etc.

Non-Initialized Pointer: NIP
This is a check to establish whether a pointer is initialized before being
dereferenced. Consider the following example.

2
3 void main(void)
4 {
5 int* p;
6 *p = 0; // NIP ERROR: pointer not initialized
7 }

As p is not initialized, an undefined memory cell would be overwritten at line
6 (*p = 0) (also leading to the unreachable grey check on "*").

Power Arithmetic: POW
Check to establish whether the standard pow function from math.h library is
used with an acceptable (positive) argument.

1 #include <math.h>
2
3 extern double pst_randd(void);
4 extern int pst_intr(void);
5 int main(void)
6 {
7 int IRes, ILeft, IRight;
8 double Res;
9
10 if (pst_intr()) {
11 ILeft = 0;
12 IRight = -1;
13 Res = pow(ILeft,IRight); // POW ERROR: Power must be positive
14 }
15

8-20

Colored Source Code for C

16 ILeft = 2e8;
17 IRight = 2;
18 Res = pow(ILeft, IRight); // OVFL Warning
19 Res = pow (pst_randd(), pst_randd()); // POW Warning :
Power may be not positive
20
21 return(0);
22 }

An error should occur on the pow function on integer or float values with
respect to the values of the left and right parameters for some couple of
parameters (left = 0 and right <0) or (left < 0 and right > 0) : (0, -2), (-2,0.5),
etc. Otherwise, PolySpace software prompts the user to investigate further by
means of an orange check.

User Assertion: ASRT
This is a check to establish whether a user assertion is valid. If the
assumption implied by an assertion is invalid, then the standard behavior of
the assert macro is to abort the program. PolySpace therefore considers a
failed assertion to be a runtime error. Consider the following example.

1 #include <assert.h>
2
3 typedef enum
4 {
5 monday=1, tuesday,
6 wensday, thursday,
7 friday, saturday,
8 sunday
9 } dayofweek ;
10
11 // stubbed function
12 dayofweek random_day(void);
13 int random_value(void);
14
15 void main(void)
16 {
17 unsigned int var_flip;
18 unsigned int flip_flop;

8-21

8 Results Review

19 dayofweek curDay;
20 unsigned int constant = 1;
21
22 if (random_value()) flip_flop=1; else flip_flop=0; // flip_flop
randomly be 1 or 0
23 var_flip = (constant | random_value()); // var_flip is
always > 0
24
25 if(random_value()) {
26 assert(flip_flop==0 || flip_flop==1); // User Assertion is
verified
27 assert(var_flip>0); // User Assertion is
verified
28 assert(var_flip==0); // ASRT ERROR: Failure User
Assert
29 }
30
31 if (random_value()) {
32 curDay = random_day(); // Random day of the week
33 assert(curDay > thursday); // ASRT Warning: User
assertion may fails
34 assert(curDay > thursday); // User assertion is
verified
35 assert(curDay <= thursday); // ASRT ERROR: Failure User
Assertion
36 }
37 }

In the main, the assertfunction is used in two different manners:

1 To establish whether the values flip_flop and var_flip in the program are
inside the domain which the program is designed to handle. If the values
were outside the range implied by the assert (see line 28), then the program
would not be able to run properly. Thus they are flagged as run-time errors.

2 To redefine the range of variables as shown at line 34 where curDay is
restricted to just a few days. Indeed, PolySpace makes the assumption that
if the program is executed without run time error at line 33, curDay can
only have a value greater than thursday after this line.

8-22

Colored Source Code for C

Scalar and Float Underflows: UNFL
These are checks to establish whether arithmetic expressions underflow. A
scalar check is used with integer type, and a float check for floating point
expressions. Consider the following example.

1 #include <float.h>
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int i = 1;
7 float fval = FLT_MAX;
8
9 i = -2 * (i << 30); // i = -2**31
10 if (random_int()) i = i - 1; // UNFL ERROR: scalar
variable is underflow
11 if (random_int()) fval = -2 * fval; // UNFL ERROR: float
variable is underflow
12 }
13

The minimum integer value on a 32 bit architecture platform is represented
by -2**31, thus adding (-1)will raise an underflow.

Scalar and Float Overflows: OVFL
These are checks to establish whether arithmetic expressions overflow. This is
a scalar check with integer type and float check for floating point expression.
Consider the following example.

1 #include <float.h>
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int i = 1;
7 float fvalue = FLT_MAX;
8
9 i = i << 30; // i = 2**30
10 if (random_int())

8-23

8 Results Review

11 i = 2 * (i - 1) + 2; // OVFL ERROR: 2**31 is an overflow
value for int32
12 if (random_int())
13 fvalue = 2 * fvalue + 1.0; // OVFL ERROR: float variable is
overflow
14 }

On a 32 bit architecture platform, the maximum integer value is 2**31-1, thus
2**31will raise an overflow.

In the same manner, if fvaluerepresents the biggest float its double cannot be
represented with same type and raises an overflow.

Left shift overflow on signed variables: OVFL
Overflows can be also be encountered in the case of left shifts on signed
variables. In the following example, the higher order bit of 0x41021011
(hexadecimal value of 1090654225) has been lost, highlighting an overflow
(integer promotion).

1
2 void main(void)
3 {
4 int i;
5
6 i = 1090654225 << 1; // OVFL ERROR: on left shift range
7 }

Float Underflows and Overflows: UOVFL
The check UOVFL only concerns float variables. PolySpace shows an UOVFL
when both overflow and underflow can occur on the same operation.

1 #include <math.h>
2 extern int random(void);
3 #define FLT_MAX 3.40282347e+38F
4
5 int toto(void)
6 {
7 float x;
8 if (random())

8-24

Colored Source Code for C

9 {
10 x = -FLT_MAX;
11 }
12 else if (random())
13 {
14 x = FLT_MAX;
15 }
16 else
17 {
18 x = 0;
19 }
20 x = 2.0F * x; // UOVFL unproven: possible overflow and
underflow
21 return 1;
22 }

According to the branch in use, the results of the operation 2.0F * x could
overflow or underflow.

How Much is the Biggest Float in C?
There are occasions when it is important to understand when overflow may
occur on a float value approaching its maximum value. Consider the following
example.

void main(void)
{
float x, y;
x = 3.40282347e+38f; // is green
y = (float) 3.40282347e+38; // OVFL red

}

There is a red error on the second assignment, but not the first. The real
"biggest" value for a float is: 340282346638528859811704183484516925440.0
- MAXFLOAT -.

Now, rounding is not the same when casting a constant to a float, or a
constant to a double:

• floats are rounded to the nearest lower value;

8-25

8 Results Review

• doubles are rounded to the nearest higher value;

• 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440 (named MAXFLOAT).

• In the case of the second assignment, the value is cast to a double first
- by your compiler, using a temporary variable D1 -, then into a float -
another temporary variable -, because of the cast. Float value is greater
than MAXFLOAT, so the check is red.

• In the case of the first assignment, 3.40282347e+38f is directly cast into a
float, which is less than MAXFLOAT

The solution to this problem is to use the "f" suffix to specify the variable
directly as a float, rather than casting.

What is the Type of Constants/What is a Constant Overflow?
Consider the following example, which would cause an overflow.

int x = 0xFFFF; /* OVFL */

The type given to a constant is the first type which can accommodate its
value, from the appropriate sequence shown below. (See “Target Specification
(size of char, int, float, double...)” on page 3-9 for information about the size
of a type depending on the target.)

Decimals int , long , unsigned long

Hexadecimals Int, unsigned int, long, unsigned
long

Floats double

For examples (assuming 16-bits target):

5.8 double

6 int

65536 long

0x6 int

8-26

Colored Source Code for C

0xFFFF unsigned int

5.8F float

65536U unsigned int

The options -ignore-constant-overflows allow the user to bypass this limitation
and consider the line:

int x = 0xFFFF; /* OVFL */ as int x = -1; instead of 65535, which does not fit
into a 16-bit integer (from -32768 to 32767).

Float Underflow Versus Values Near Zero: UNFL
The definition of the word "underflow" differs between the ANSI standard
and the ANSI/IEEE 754-1985 standard. According to the former definition,
underflow occurs when a number is sufficiently negative for its type not to
be capable of representing it. According to the latter, underflow describes
the erroneous representation of a value close to zero due to the limits of its
representation.

PolySpace analyses apply the former definition. The latter definition does
not impose the raising of an exception as a result of an underflow. By
default, processors supporting this standard permit the deactivation of such
exceptions.

Consider the following example.

2 #define FLT_MAX 3.40282347e+38F // maximum representable
float found in <float.h>
3 #define FLT_MIN 1.17549435e-38F // minimum normalised
float found in <float.h>
4
5 void main(void)
6 {
7 float zer_float = FLT_MIN;
8 float min_float = -(FLT_MAX);
9
10 zer_float = zer_float * zer_float; // No check underflow
near zero. VOA says {[expr] =
0.0}

8-27

8 Results Review

11 min_float = min_float * min_float; // UNFL ERROR:
underflow checked by verifier
12
13 }

Scalar or Float Division by Zero: ZDV
This is a check to establish whether the right operand of a division (that is,
the denominator) is different from 0[.0]. Consider the following example.

1 extern int random_value(void);
2
3 void zdvs(int p)
4 {
5 int i, j = 1;
6 i = 1024 / (j-p); // ZDV ERROR: Scalar Division by Zero
7 }
8
9 void zdvf(float p)
10 {
11 float i,j = 1.0;
12 i = 1024.0 / (j-p); // ZDV ERROR: float Division by Zero
13 }
14
15 int main(void)
16 {
17 volatile int random;
18 if (random_value()) zdvs(1); // NTC ERROR: because of ZDV ERROR
in ZDVS.
19 if (random_value()) zdvf(1.0); // NTC ERROR: because of ZDV ERROR
in ZDVF.
20 }

Shift Amount in 0..31 (0..63):SHF
This is a check to establish whether a shift (left or right) is bigger than the
size of the integral type operated upon (int or long int). The range of allowed
shift depends on the target processor: 16 bits on c-167, 32 bits on i386 for int,
etc. Consider the following example.

1 extern int random_value(void);
2

8-28

Colored Source Code for C

3 void main(void)
4 {
5 volatile int x;
6 int k, l = 1024; // 32 bits on i386
7 unsigned int v, u = 1024;
8
9 if (x) k = l << 16;
10 if (x) k = l >> 16;
11
12 if (x) k = l << 32; // SHF ERROR
13 if (x) k = l >> 32; // SHF ERROR
14
15 if (x) v = u >> 32; // SHF ERROR
16 if (x) k = u << 32; // SHF ERROR
17
18 }

In this example, it is shown that the shift amount is greater than the integer
size.

Left Operand or Left Shift is Negative: SHF
This is a check to establish whether the operand of a left shift is a signed
number. Consider the following example.

1
2
3 void main(void)
4 {
5 int x = -200;
6 int y;
7
8 y = x << 1; // SHF ERROR: left operand must be positive
9
10 }

As an aside, note that the -allow-negative-operand-in-shift option used at
launching time instructs PolySpace software to permit explicitly signed
numbers on shift operations. Using the option in the example above would see
the red check at line 8 transformed in a green one. Similarly, if the analysis

8-29

8 Results Review

had included the expression -2 << 2 at line 9, then that line would have been
given a green check and y would assume a values of -8.

Function Pointer Must Point to a Valid Function: COR
This is a check to establish whether a function pointer points to a valid
function, or to function with a valid prototype. Consider the following example.

1
2 typedef void (*CallBack)(float *data);
3
4 struct {
5 int ID;
6 char name[20];
7 CallBack func;
8 } funcS;
9
10 float fval;
11
12 void main(void)
13 {
14 CallBack cb = (CallBack)((char*)&funcS + 24*sizeof(char));
15
16 cb(&fval); // COR ERROR: function pointer must point
to a valid function
17 }

In the example above, func has a prototype in conformance with CallBack’s
declaration. Therefore func is initialized to point to the NULL function
through the global declaration of funcS.

Consider a second example.

1
2 #define MAX_MEMSEG 32764
3 typedef void (*ptrFunc)(int memseg);
4 ptrFunc initFlash = (ptrFunc)(0x003c);
5
6 void main(void)
7 {
8 int i;

8-30

Colored Source Code for C

9
10 for (i = 0 ; i < MAX_MEMSEG; i++) // NTL propagation
11 {
12 initFlash(i); // COR ERROR: function pointer must point to a
valid function
13 }
14
15 }

As PolySpace verification does not take the memory mapping of programs into
account, it cannot ascertain whether 0x003 is the address of a function code
segment or not (for instance, as far as PolySpace is concerned it could be a
data segment). Thus a certain (red) error is raised.

Wrong Type for Argument: COR
This is a check to establish whether each argument passed to a function
matches the prototype of that function. Consider the flowing example.

1
2 typedef struct {
3 float r;
4 float i;
5 } complex;
6
7 typedef int (*t_func)(complex*);
8
9 int foo_type(int *x)
10 {
11 if (*x%2 == 0) return 0;
12 else return 1;
13 }
14
15 void main(void)
16 {
17 t_func ptr_func;
18 int j,i = 0;
19
20 ptr_func = foo_type;
21 j = ptr_func(&i); // COR ERROR: wrong type of argument for #1

8-31

8 Results Review

22 }
23

In this example, ptr_funcis a pointer to a function which expects a pointer
to a complex as input argument. However, the parameter used is a pointer
to an int.

Wrong Number of Arguments: COR
This is a check to establish whether the number of arguments passed to a
function matches the number of arguments in its prototype. Consider the
following example.

1
2 typedef int (*t_func_2)(int);
3 typedef int (*t_func_2b)(int,int);
4
5 int foo_nb(int x)
6 {
7 if (x%2 == 0)
8 return 0;
9 else
10 return 1;
11 }
12
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;
20 i = ptr_func(1,2); // COR ERROR: the wrong number of arguments
21 }
22

In this example, ptr_funcis a pointer to a function that takes two arguments
but it has been initialized to point to a function that only takes one.

8-32

Colored Source Code for C

Wrong Return Type of a Function Pointer: COR
This is a check to establish whether the return type passed to a function
pointer matches the declaration in its prototype. Consider the following
example.

1
2 typedef int (*t_func_2)(int);
3 typedef double (*t_func_2b)(int);
4
5 int foo_nb(int x)
6 {
7 if (x%2 == 0)
8 return 0;
9 else
10 return 1;
11 }
12
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;
20 i = ptr_func(1,2); // COR ERROR: function pointer must
point on a valid function
21 // COR Warning: return type of function
is INT but a FLOAT was expected
22 }
23

In this example, ptr_func is a pointer to a function that return a double
but it has been initialized to point to a function that returns an int. The
understanding of the red error is given in the orange associated COR message.

Wrong Return Type for Arithmetic Functions: COR
This is a check to establish whether that a wrong return type is used for
an arithmetic function.

8-33

8 Results Review

Using arithmetic functions without including <math.h> is compiler dependent
in the real world because compiler could associate a integral return type to
an implicit function.

However, as arithmetic functions are built-in in PolySpace software, you can
face an inconsistency problem <math.h> is not explicitly included in the code
file where an arithmetic function is used. All arithmetic function declared
in <math.h> are concerned.

Consider the following examples:

Results without <math.h>:

1
2 int main(void) {
3
4 double x;
5 x = cos(2*3.1415); // COR ERROR: return type of
function cos is INT 32 but a float 64 was expected
6 }

Results with <math.h>:

1 #include <math.h>
2 int main(void) {
3
4 double x;
5 x = cos(2*3.1415);
6 }

In the previous example without the definition of <math.h>, cos is declared
without prototype and default return type is an int32.

Pointer Within Bounds: IDP
This is a check to establish whether a dereference pointer is still within the
bounds of the object it intended to point to.

Consider the following example.

1

8-34

Colored Source Code for C

2 #define TAILLE_TAB 1024
3 int tab[TAILLE_TAB];
4 int *p = tab;
5
6 void main(void)
7 {
8
9 int index;
10
11 for (index = 0; index < TAILLE_TAB ; index++, p++)
12 {
13 *p = 0;
14 }
15
16 *p = 1; // IDP ERROR: pointer is outside its bound
17 }

In the example, the pointer p is initialized to point to the first element of
the tab array at line 4. When the loop is exited, p points beyond the last
element of the array.

Thus line 16 overwrites memory illegally.

Understanding Addressing

• “I Systematically Have an Orange Out of Bounds Access On My Hardware
Register” on page 8-35

• “The NULL Pointer Case” on page 8-37

• “Comparing Address” on page 8-40

I Systematically Have an Orange Out of Bounds Access On My
Hardware Register. Many code analyses exhibit orange out of bound
checks with respect to accesses to absolute addresses and/or hardware
registers.

(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

8-35

8 Results Review

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because X ~ [-2^31, 2^31-1] permanently.

// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because *p ~ [-2^31, 2^31-1] permanently

// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

Replace By

#define X int X;

8-36

Colored Source Code for C

Replace By

int *p; int _p;#define p (&_p)

Note Check that the chosen
variable name (p in this example)
doesn’t already exist

int *p; volatile int _p;int *p = &_p;

See “Volatile” on page 3-68 for a discussion of an approach which will
help avoid the orange check on the pointer dereference, but retains the
representation of a “full range” variable.

The NULL Pointer Case. Consider the NULL address, viz.

#define NULL ((void *)0)

• It is illegal to dereference this NULL address;

• 0 is not treated as an absolute address.

*NULL = 100; //produces a red - Illegal Dereference Pointer (IDP)

8-37

8 Results Review

Assuming these declarations:-

int *p = 0x5;
volatile int y;

and these definitions:-

#define NULL ((void *) 0)
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below.

While (p != (void *)0x1)
p--; // terminates

0x1 is an absolute address, it can be reached and the loop terminates

8-38

Colored Source Code for C

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // illegal dereference of pointer

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL
pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange dereference of a pointer

}

When p reaches the address 0x0, there is an attempt to considered it as
an absolute address

In effect, it is an attempt to dereference a NULL pointer - which is forbidden.

Note In this case, the check is orange because the execution of the code
here is OK (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of PolySpace software, it is easy to
automatically stub a function whose purpose is to copy data from/to RAM
or to compute a checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is essential to ensure the assignment of the
correct initialization values to them.

8-39

8 Results Review

Comparing Address. PolySpace software only deals with the information
referred to by a pointer, and not the physical location of a variable.
Consequently it does not compare addresses of variables, and makes no
assumption regarding where they are located in memory.

Consider the following two examples of PolySpace verification
behavior:

int a,b;
if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;
for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because PolySpace doesn't consider

// any relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the PolySpace analysis is concerned, “x” remains constantly
equal to 12.

Understanding Pointers
PolySpace software does not analyze anything which would require the
physical address of a variable to be taken into account.

• Consider two variables x and y. PolySpace analysis will not make a
meaningful comparison of “&x” (address of x) and “&y”

8-40

Colored Source Code for C

• So, the Boolean (&x < &y) can be true or false as far as PolySpace analysis
is concerned.

However, PolySpace analysis does keep track of the pointers that point to
a particular variable.

• So, if ptr points to X, *ptr and X will be synonyms.

Address Alignment: the bitfield Example. Structure size depends on
bit alignment.

Consider the following example, where an attempt is made to map a character
to a bitfield.

struct reg {
unsigned int a: 5;
unsigned int b: 3;

};
int main()
{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)
return 1;

return 0;
}

Consider a 32 bit target architecture (so int are 32 bits, i.e. 4 bytes). The size
of a bit field is the size of the type of its elements. In the example above, the
elements in the bit field are unsigned int, hence the size is 4 bytes. Since this
is greater than 1, the structure reg cannot be contained in the char c.

This can be solved by using the unsigned char type for the elements in the bit
field. The size of the bit field is then 1 byte and there is therefore no red error.

struct reg {
unsigned char a: 5;
unsigned char b: 3;

};
int main()

8-41

8 Results Review

{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)
return 1;

return 0;
}

Note You must also use the option -allow-non-int-bitfield to implement this
solution, since this is an extension to the ANSI® standard.

How Does malloc Work for PolySpace Verification?. PolySpace analysis
accurately models malloc, such that both the possible return values of a null
pointer and the requested amount of memory are taken into account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

8-42

Colored Source Code for C

Data Mapping into a Structure . It often happens that structured data
are read as a char array. Before manipulating them it might be desirable
to map those data into a structure that reflects their organization. In the
following example an IDP warning (orange check) at line 22 suggests that the
correctness of the code needs to be confirmed.

1
2
3 typedef struct
4 {
5 unsigned int MsgId;
6 union {
7 float fltv;
8 unsigned int intv;
9 } Msgbody;
10 } Message;
11
12 int random_int(void);
13 Message *get_msg(void);
14 void wait_idl(void);
15
16 void treatment_msg(char *msg)
17 {
18 Message *ptrMsg;
19
20 ptrMsg = (Message *)msg;
21 if (ptrMsg != NULL) {
22 if (ptrMsg->MsgId) { // IDP Warning: pointer may be
outside its bounds
23 // ...
24 }
25 }
26 }
27
28 int main (void) {
29
30 Message *msg;
31
32 while(random_int()) {
33 msg = get_msg();

8-43

8 Results Review

34 if (msg) treatment_msg((char *)msg);
35 wait_idl();
36 }
37 return 0;
38 }

Mapping of a small structure into a bigger one. For example, suppose
that p is a pointer to an object of type t_struct and it is initialized to point to
an object of type t_struct_bis.

Now suppose that the size of t_struct_bis is less than the size of t_struct.
Under these circumstances, it would be illegal to dereference p because it
would be possible to access memory outside of t_struct_bis.

Consider the following example.

1 #include <malloc.h>
2
3 typedef struct {
4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP ERROR: not allowed to deference p
19
20 }

8-44

Colored Source Code for C

Partially allocated pointer (-size-in-bytes). According to the ANSI
standard, the whole of a structure must be populated for that structure to be
valid. In this case, the pointer is said to be fully allocated. A pointer is said
to be partly allocated when only the first part of a structure is populated.
In some development environments, that approach is tolerated despite the
ANSI stance.

By default, PolySpace verification strictly conforms to the standard and
checks for adherence to it. A more tolerant approach can be specified by using
the -size-in-bytes option. So, depending on the -size-in-bytes option, when a
partially allocated pointer is encountered during a PolySpace analysis, the
first elements of the allocated object may or may not be considered as valid.

First consider the following example. (A second example follows it to illustrate
how this might apply to pointer arithmetic within a structure)

1 typedef struct _little { int a; int b; } LITTLE;
2 typedef struct _big { int a; int b; int c; } BIG;
3
4 int main(void)
5 {
6 BIG *p = malloc(sizeof(LITTLE));
7 volatile int y;

With -size-in-bytes option

9 if (p==((void *)0)) return 0;
10 if(y) { p->a = 0; } // green
11 if(y) { p->b = 0; } // green
12 if(y) { p->c = 0; } // red
}

Default launching option

9 if(y) { p->a = 0 ; } // red
10 if(y) { p->b = 0 ; } // red
11 if(y) { p->c = 0 ; } // red
12
13 if (p==((void *)0))
14 return 0;
15 else

8-45

8 Results Review

16 return 1; // dead code
17 return 1;
18 }

With the standard launching option, a pointer that has not been allocated to a
complete structure is considered invalid, or NULL (as shown in the dead code).

This second example illustrates how this might apply to pointer arithmetic
within a structure

1 typedef struct _inside { int a; int b; } INSIDE;
2 typedef struct _outside { int a; INSIDE x; } OUTSIDE;
3
4 OUTSIDE out;
5
6 void main(void)
7 {
8 unsigned char *ptr = (unsigned char *) &out;
9 INSIDE *p = (INSIDE *)(ptr + sizeof(int));

With -size-in-bytes option

11 p->b = 100; // green

Default launching option

11 p->b = 100; // red

With the default launching option and in accordance with the ANSI standard,
the size of the INSIDE structure function implies that there is only one such
structure within the OUTSIDE structure. Therefore, p has passed that one,
and is out of bounds. With the -size-in-bytes option, the dereference check is
green because since the pointer remains within the structure.

Pointer to a structure field. According to the ANSI C standard, pointer
arithmetic is to be independent of the size of the object (structure or array) to
which the pointer points. By default, PolySpace verification strictly conforms
to the standard and checks for adherence to it.

8-46

Colored Source Code for C

In some development environments an approach that does not recognize that
requirement is tolerated, despite the ANSI stance. Under those circumstances,
results are likely to include red pointer out of bounds checks unexpectedly.

A more tolerant approach can be specified at launch time. Consider the
following examples.

char *p; // the size of the object pointed to is unknown,
// but arithmetic on this pointer is well defined.
// p = p + 5; will increment the location pointed to by
5 bytes (if the
size of a char is 1 byte)
int x; // assuming that an int is 4 bytes
p = &x; *p = 0; // the first byte of x
p++; *p = 0; // the second byte of x
p++; *p = 0; // the third byte of x
p++; *p = 0; // the fourth byte of x
p++; *p = 0; // an out of bound access

For structures, the same behavior can be applied.

struct { int a; int b; } x;
char *p = &x.a; // the pointed object is not the structure
but the field
*p = 0; // it is the first byte of x.a
p++; *p = 0; // it is the second byte of x.a
p++; *p = 0; // it is the third byte of x.a
p++; *p = 0; // it is the fourth byte of x.a
p++; *p = 0; // here is an out of bound access because
we are out of the field

If you wish to tolerate an approach which allows a pointer to go from one field
to another, you can do so by using the -size-in-bytes option together with
the -allow-ptr-arith-on-struct option . When a pointer points to a field in a
structure, you will then be allowed to access other fields from this pointer.
Note that as a consequence, any other "out of bound" accesses in the code
will be ignored.

An alternative solution is to make your variable point to the structure rather
than to the field, as follows:

8-47

8 Results Review

struct { int a; int b; } x;
char *p = &x; // the pointed object is the structure
*p = 0; // we are modifying x.a (first byte)
p++; *p = 0; // we are modifying x.a (second byte)
p++; *p= 0; // we are modifying x.a (third byte)
p++; *p = 0; // we are modifying x.a (fourth byte)
p++; *p = 0; // we are modifying x.b (fifth byte of the structure)

A further alternative is to follow the ANSI C recommendation to use the
“offsetof()” function, which jumps to the corresponding offset within the
structure:-

#include <stddef.h>
typedef struct _m { int a; int b; } S;
S x;
char *p = (char *) &x + offsetof(S,b); // points to field b

I have a red when reading a field of one structure . Consider the
following example.

5 typedef struct {
6 unsigned char c1;
7 unsigned char c2;
8 } my_struct;
9
10 int main(void)
11 {
12 my_struct v;
13 unsigned short x=0,y=0;
14
15 v.c1=9;
16 v.c2=15;
17 x = *((unsigned short *)&v.c1);

Just like the example in “Pointer to a structure field” on page 8-46, the object
pointed to is the field in the structure, not the structure itself. Therefore, it
is only possible to navigate inside this field. A short variable occupies more
memory than a char, so it is a red pointer out of bounds.

This can be addressed by replacing

8-48

Colored Source Code for C

x = *((unsigned short *)&v.c1);

with

y = (v.c1 <<sizeof(v.c2)*8) | v.c2;

This solution also ensures that the code is no longer target dependent.

Non Termination of Call or Loop
NTC and NTL are informative red (or orange) checks.

• They are the only red checks which can be filtered out as shown below

• They don’t stop the analysis

• As for other red checks, code found after them are grey (unreachable)

• These checks may only be red. There are no “orange” NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

8-49

8 Results Review

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.

while(1) { function_call(); } // informative NTL

while(x>=0) {x++; } // where x is an unsigned int. This may reveal
a bug?

for(i=0; i<=10; i++) my_array[i] = 10; // where “int my_array[10];”
applies. This red NTL reveals a bug in the array access, flagged in
orange

ptr = NULL; for(i=0; i<=100; i++) *ptr=0; // the first iteration of the
loop is red, and therefore it is flagged as an NTL. The “i++” will
be grey, because the first iteration crashed.

NTC Suppose that a function calls f(), and that function call is flagged
with a red NTC check. There could be five distinct explanations:

• “f” contains a red error;

• “f” contains an NTL ;

• “f” contains an NTC;

• “f” contains an orange which is context dependant; that is, it
is either red or green. For this particular call, it makes the
function “f” crash.

• “f” is a mathematical function, such as sqrt, acos which has
always an invalid input parameter

Remember, additional information can be found when clicking on
the NTC

Note A sqrt check is only colored if the input parameter is never valid. For
instance, if the variable x may take any value between -5 and 5, then sqrt(x)
has no color.

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.

8-50

Colored Source Code for C

The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under analysis?).

If a function is identified which is not expected to terminate (such as a loop
or an exit procedure) then the -known-NTC function is an option. You will
find all the NTCs and their consequences in the k-NTC facility in the Viewer,
allowing you to filter them.

Non Termination of a Call: NTC
This is a check to establish whether a procedure call returns. It is not the
case when the procedure contains an endless loop or a certain error, or if the
procedure calls another procedure which does not terminate. In the latter
instance, the status of this check is propagated to caller.

1
2
3 void foo(int x)
4 {
5 int y;
6 y = 1 / x; // Warning ZDV: its depends of the context
7 while(1) { // NTL ERROR: loop never terminates
8 if (y != x) {
9 y = 1 / (y-x);
10 }
11 }
12 }
13
14 void main(void) {
15 volatile int _x;
16
17 if (_x)
18 foo(0); // NTC ERROR: Zero DiVision (ZDV) in foo
19 if (_x)
20 foo(2); // NTC ERROR: Non Termination Loop (NTL) in foo
21

8-51

8 Results Review

22 }
23

In this example, the function foo is called twice in main and neither of these 2
calls ever terminates.

1 The first never returns because a division by zero occurs at line 6 (bad
argument value),

2 The second never terminates because of an infinite loop (red NTL) at line 7.

Also with reference to the example and as an aside, note that by using either
the -context-sensitivity "foo" option or the -context-sensitivity-auto option at
launch time it would be possible for PolySpace verification to show explicitly
that a ZDV error comes from the first call of foo in main.

Note An NTC check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTC
checks can also be orange.

Known Non-Termination of a Call: k-NTC
By using the -known-NTC option with a specified function at launch time it
is possible to transform an NTC check to a k-NTC check. Like NTC checks,
k-NTC checks are propagated to their callers. Functions designed not to
terminate can then be filtered out through the use of the appropriate filter
in the viewer.

Consider the following example, supposing that -know-NTC "SysHalt"
option has been applied at launch time.

1
2 /* external get data function */
3 extern int get_data(int *ptr,void *data);
4 extern int printf (const char *, ...);
5
6 // known NTC function
7 void SysHalt(int value)
8 {

8-52

Colored Source Code for C

9 printf("Halt value %d",value);
10 while (1) ; // NTL ERROR: Loop Never Terminate
11 }
12
13 #define OK 1
14 int main(void)
15 {
16 int data, *ptr = NULL;
17 int status = OK;
18
19 // get next store
20 status = get_data(ptr,(void *)&data);
21 if (status != OK)
22 SysHalt(status); // k-NTC check: Call never
terminate
23
24 return(0);
25 }

In the example, the relevant NTC check is converted to a k-NTC one.

Non Termination of Loop: NTL
This is a check to establish whether a loop (for, do-while or while) terminates.
Consider the following example:

1
2 // Function prototypes
3 void send_data(double data);
4 void update_alpha(double *a);
5
6 void main(void)
7 {
8 volatile double _acq;
9 double acq, filtered_acq, alpha;
10
11 // Init
12 filtered_acq = 0.0;
13 alpha = 0.85;
14
15 while (1) { //NTL ERROR: Non Termination Loop

8-53

8 Results Review

16 // Acquisition
17 acq = _acq;
18 // Treatment
19 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
20 // Action
21 send_data(filtered_acq);
22 update_alpha(&alpha);
23 }
24 }

In the example, the continuation condition is always true and the loop will
never exit. PolySpace verification will raise an error in trivial examples such
as this, and in much more complex circumstances.

Consider this second analysis. When an error is found inside a for, do-while,
or while loop, PolySpace will not continue to propagate it.

1
2 void main(void)
3 {
4 int i;
5 double twentyFloat[20];
6
7 for (i = 0; i <= 20; i++) { // NTL ERROR: propagation of OBAI ERROR
8 twentyFloat[i] = 0.0; // OBAI Warning: 20 verification with i
in [0,19] and one ERROR with i = 20
9 }
10 }

At line 8 in this second example, the red OBAI related to the 21th execution
of the loop has yielded the orange check. The 20 first executions would be
no problem, so this orange warning represents a combination of red and
green checks.

Note An NTL check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTL
checks can also be orange.

8-54

Colored Source Code for C

Arithmetic Expressions: NTC
This is a check to establish whether standard arithmetic functions are used
with valid arguments, as defined in the following:

• Argument of sqrt must be positive (ISO®/IEC 9899 section 7.5.5.2)

• Argument of tan must be different from pi/2 modulo pi (ISO/IEC 9899
section 7.5.2.7)

• Argument of log must be strictly positive (ISO/IEC 9899 section 7.5.4.4)

• Argument of acos and asin must be within [-1..1] (ISO/IEC 9899 sections
7.5.2.1 and 7.5.2.2)

• Argument of exp must be less than or equal to 709 (ISO/IEC 9899 section
7.5.4.1)

• Argument of atanh must be within]-1..1[(ISO/IEC 9899 section 7.12.5.3)

• Argument of acosh must be greater or equal to 1 (ISO/IEC 9899 section
7.12.5.1)

A domain error (such that errno returns EDOM) occurs if an input argument
is outside the domain over which the mathematical function is defined. A
range error occurs (such that errno returns ERANGE) if the result cannot be
represented as a double value. In the latter case, the function returns 0 if the
result is too small, or HUGE_VAL with the appropriate sign if it is too big.

Consider the following example

1
2 #include <math.h>
3 #include <assert.h>
4
5 extern int random_int(void);
6
7 int main(void)
8 {
9
10 volatile double dbl_random;
11 const double dbl_one = 1.0;
12 const double dbl_mone = -1.0;
13

8-55

8 Results Review

14 double sp = dbl_random;
15 double p = dbl_random;
16 double sn = dbl_random;
17 double n = dbl_random;
18 double no_trig_val_neg = dbl_random;
19 double no_trig_val_pos = dbl_random;
20 double pun = dbl_random;
21 double res;
22
23 // assert is used here to redefine range values of variables
24 assert(sp > 0.0);
25 assert(p >= 0.0);
26 assert(sn < 0.0);
27 assert(n <= 0.0);
28 assert(pun < 1.0);
29 assert(no_trig_val_neg < -1.0); assert(no_trig_val_pos > 1.0);
30
31 if (random_int()) res = sqrt(sn); // NTC ERROR:
need argument positive
32 if (random_int()) res = asin(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
33 if (random_int()) res = asin(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
34 if (random_int()) res = acos(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
35 if (random_int()) res = acos(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
36 if (random_int()) res = tan(1.5707963267948966); // NTC ERROR:
need argument in range]-pi/2..pi/2[
37 if (random_int()) res = log(n); // NTC ERROR:
need argument strictly positive
38 if (random_int()) res = exp(710); // NTC ERROR:
need argument less or equal to 709
39
40 // No information about asin or acos because of random value
41 if (random_int()) {
42 res = asin(dbl_random);
43 res = acos(dbl_random);
44 }
45

8-56

Colored Source Code for C

46 // hyperbolic functions are available in the float range
47 if (random_int()) {
48 res = cosh(710);
49 res = cosh(10.0);
50 assert (res < 1.0);
51 }
52 if (random_int()) res = sinh(710);
53 if (random_int()) {
54 res = tanh(1.0);
55 assert (res > -1.0 && res < 1.0);
56 }
57
58 // inverted hyperbolic functions
59 if (random_int()) res = acosh(pun); // NTC ERROR:
Need argument >= 1
60 else res = acosh(1.0);
61 if (random_int()) res = atanh(no_trig_val_neg); // NTC ERROR:
Need argument in]-1..1[
62 if (random_int()) res = atanh(no_trig_val_pos); // NTC ERROR:
Need argument in]-1..1[
63 if (random_int()) res = atanh(dbl_mone); // NTC ERROR:
Need argument in]-1..1[
64 if (random_int()) res = atanh(dbl_one); // NTC ERROR:
Need argument in]-1..1[
65
66 return 0;
67 }
68

sqrt, tan, asin, acos, exp and log errors are derived directly from the
mathematical definition of functions. PolySpace verification highlights any
definite problems by means of an NTC to show that this is where execution
would terminate. No NTC information is delivered when Verifier cannot
determine the exact value of the argument, (for asinand acos at lines 42 and
43). No range restriction is currently made for hyperbolic functions.

The pow function benefits from a specific check POW.

8-57

8 Results Review

Caution Due to a lack of precision in some areas, PolySpace verification is
not always able to indicate a red NTC check on mathematical functions even
where a problem exists. In the following example involving a sqrt function,
neither an orange nor a red check is shown on line16 even though the variable
val2 is negative.

By default it is important to consider each call to any mathematical functions
as though it had been highlighted by an orange check, and could therefore
lead to a runtime error.

1
2 #include <math.h>
3
4 extern int random_int(void);
5
6 int main(void)
7 {
8
9 double val1, val2;
10
11 int i;
12 val2 = 5.0;
13 for (i = 0 ; i < 10 ; i++) {
14 val2 = val2 - 1.0;
15 }
16 val1 = sqrt(val2); // No check on sqrt
17 return ((int)val1);
18 }
19

Unreachable Code: UNR
This is a check to establish whether different code snippets (assignments,
returns, conditional branches and function calls) are dead, such that they
can never be accessed during the normal execution of the software. Dead, or
Unreachable, code is represented by means of a grey coding on every check,
with supplementary UNR checks also being added.

Consider the following example.

8-58

Colored Source Code for C

1
2 #define True 1
3 #define False 0
4
5 typedef enum {
6 Intermediate, End, Wait, Init
7 } enumState;
8
9 // pure stub
10 int intermediate_state(int);
11 int random_int(void);
12
13 int State (enumState stateval)
14 {
15 volatile int random;
16 int i;
17 if (stateval == Init) return False;
18 return True;
19 }
20
21 int main (void)
22 {
23 int i, res_end;
24 enumState inter;
25
26 res_end = State(Init);
27 if (res_end == False) {
28 res_end = State(End);
29 inter = (enumState)intermediate_state(0);
30 if (res_end || inter == Wait) { // UNR code on inter
== Wait
31 inter = End;
32 }
33 // use of I not initialized
34 if (random_int()) {
35 inter = (enumState)intermediate_state(i); // NIV ERROR
36 if (inter == Intermediate) { // UNR code because
of NIV ERROR
37 inter = End;
38 }

8-59

8 Results Review

39 }
40 } else {
41 i = 1; // UNR code
42 inter = (enumState)intermediate_state(i); // UNR code
43 }
44 return res_end;
45 }
46

The example illustrates three possible reasons why code might be
unreachable, and hence be colored grey:

• At line 30 the first part of a two part test is always true. The other part is
never evaluated, following the standard definition of logical operator "||".

• The piece of code after a red error is never evaluated by PolySpace software.
The call to the function on line 35 and the line following it are considered
to be dead code. Correcting the red error and re-launching would allow
the color to be revised.

• At line 27, the test is always true (if-{ part), and the first branch is always
executed. Consequently there is dead code in the other branch (i.e. in the
else part at lines 41 to 42).

Value on Assignment: VOA
This is a check to establish the range or values which a variable may take,
each time an assignment is made to it. Such checks are only available when
the -voaoption is used at launch time. VOA checks are only available on
scalar variables.

Consider the following example.

1
2
3 typedef enum {
4 dOff=0, dOn
5 } t_digital ;
6
7 #define MAX_ANA (9.999)
8 #define MIN_ANA (-10.0)
9 #define ZERO_ANA ((MAX_ANA - MIN_ANA)/2.0 - MAX_ANA)

8-60

Colored Source Code for C

10
11 float get_analogic (int);
12 int get_digit (int);
13
14 typedef enum {Red, Green, Orange, Black} VerifierColor;
15
16 typedef struct {
17 float a;
18 VerifierColor b;
19 int c;
20 } Record;
21
22 int main(void)
23 {
24 volatile int var_int;
25 volatile float volatile_float;
26 t_digital var_digit;
27 Record var_rec;
28 int i;
29 float var_sensor;
30 VerifierColor var_color = Green; // Currently no
VOA on enum
31
32 var_digit = dOff; // no VOA
33 var_sensor = (float)(ZERO_ANA); // VOA: {[expr] <=
FLT_MAX} and {FLT_MIN <= [expr]}
34 for (i = 0 /* VOA:{[expr]=0} */ ; i < 8 ; i++) { // VOA: {1<=[expr]
<=8}
35 var_sensor = get_analogic(i); // VOA: currently
not concise
36 var_digit = (t_digital)get_digit(i); // no VOA
37 }
38
39 // Float examples
40 var_sensor = volatile_float; // VOA: currently
not concise
41 var_sensor = MAX_ANA; // VOA: {[expr]
=9.9989}
42
43 var_rec.a = var_sensor; // Curently no VOA

8-61

8 Results Review

on structures
44 var_rec.b = var_color;
45 var_rec.c = 5;
46 }

Note that inspection points (IPT) can be used to discover the possible range of
a variable at any point in the code – not just where a value is assigned.

Inspection Points: IPT
The use of #pragma Inspection_Point <var> in code submitted for an
analysis (where <var>is a scalar variable), instructs PolySpace verification to
reveal the possible range of a variable at that point in the code.

Consider the example below.

1
2 typedef struct {
3 unsigned char msb;
4 unsigned char lsb;
5 } int16;
6
7 int main(void)
8 {
9 volatile unsigned char var_uc;
10 float var_float;
11 int i;
12 int16 val;
13
14 #pragma Inspection_Point var_uc // IPT: {main:var_uc=0..256}
15 i = 3;
16 #pragma Inspection_Point i // IPT: {main:i=3}
17 val.msb = 12;
18 val.lsb = var_uc;
19 #pragma Inspection_Point val // IPT currently ignored
20 var_float = 10.0;
21 #pragma Inspection_Point var_float // IPT currently ignored
22
23 }
24

8-62

Colored Source Code for C

25

Note Inspection points at lines 19 and 21 are ignored.

8-63

8 Results Review

8-64

9

PolySpace™ Methodological
Guide

Overview (p. 9-2) Describes how PolySpace™
verification can be used during the
project development cycle

PolySpace™ Usage (p. 9-5) Describes how PolySpace software
can be used

PolySpace™ Activities (p. 9-20) Describes regular activities you can
do to maximize your results

Automatically Testing Orange Code
(p. 9-33)

Describes how to use the Automatic
Orange Tester feature

How to Get the Best Results (p. 9-56) Describes how to use PolySpace
software efficiently

Applying Coding Rules to Reduce
Oranges (p. 9-87)

Describes how to utilize MISRA®

rules to reduce orange checks

9 PolySpace™ Methodological Guide

Overview
This chapter will be of interest to Project managers, quality managers
and developers who are looking to understand PolySpace™ results, and are
looking to optimize the timing of its use during the project development cycle.
The document suggests how PolySpace verification might best be applied
at each phase of a typical project lifecycle. The twin goals of productivity
and quality are considered, and it is acknowledged that the criticality of the
application will affect the balance between them.

However, the following assumes that the primary goal is to achieve maximum
productivity with no quality defects. The document explains how to use
PolySpace tools at each phase of the development cycle to aim for such a goal,
with the financial implications of implementing each recommendation is left
for assessment by the user.

9-2

Overview

This guide suggests answers to the following questions.

It answers those questions by means of the following topics: an explanation of
each PolySpace approach. A “PolySpace approach” or “Approach” is defined
in this context as the manner of use of PolySpace verification to achieve
a particular goal, with reference to a collection of techniques and guiding
principles. These include suggestions of different activities which might be
completed before functional unit test or integration tests, depending on the
development process:

• An explanation of the collection of techniques and guiding principles going
to form each Approach.

• Fixing red and grey — review run time errors and dead code checks only

• Selective orange review — review warnings and find bugs quickly and
efficiently. Suitable when time is short, and the aim is to maximize the
number of bugs discovered.

• Exhaustive orange review — how much it costs and the value it brings at
the unit phase and at the integration phase

• Shared data conflict detection — and the problems it can highlight

9-3

9 PolySpace™ Methodological Guide

• Data flow analysis

• Integration bugs tracking

An explanation of the steps required to progress seamlessly from one
approach to the next:

• Coding rules to allow an efficient exhaustive warning review.

• Data rules to allow efficient integration bug tracking

9-4

PolySpace™ Usage

PolySpace™ Usage

In this section...

“Overview of the PolySpace™ Approach” on page 9-5

“Standard Development Process” on page 9-10

“Rigorous Development Process: Introducing Tools and Coding Rules” on
page 9-14

“A Quality/Qualification Approach” on page 9-17

“Code Acceptance Criterion” on page 9-18

Overview of the PolySpace™ Approach
PolySpace™ tools can support two main objectives concurrently.

• Reduction of testing and validations costs

• Improvement of the software quality

PolySpace tools can be used in different ways depending on the context, the
primary difference being in the approach used to exploit the results generated.
The following diagrams summarize the different approaches.

Note The aim here is not to compare the cost of certification processes, or
of development processes with or without coding rules. The graphs aim to
compare the costs of typical processes with and without PolySpace software.

When No Coding Rules Are Adopted
During the coding activity, there are two recommended approaches:

9-5

9 PolySpace™ Methodological Guide

The first approach is to use only the red and grey results: fix the red bugs,
and check the dead code for abnormalities.

The second approach involves the same activities, and adds a partial review
of the orange warnings. The aim is to find as many bugs as possible, with
very limited efforts. This approach finds more bugs and therefore improves
the quality. It does involve more effort, but the amount of time spent to find
each bug remains very small.

Note Using PolySpace verification on one single file is efficient: even though
there is no knowledge of the file context, experience shows that 50% of the
bugs detected by PolySpace verification can be found locally.

This symbol is used to indicate that when level of usage of
PolySpace verification has been successfully implemented the development
team can migrate to a more demanding (and more fruitful) one. This
migration is not always desirable; it of course depends on the projects context.

Then, after coding, before the testing activity:

9-6

PolySpace™ Usage

Again, the first approach is to use only the red and grey results: fix the red
bugs, and check the dead code.

The second approach includes the same activities, and adds a partial review
of the orange warnings and of the orange shared data.

When Coding Rules Have Been Adopted
The main difference here by comparison with the previous processes is with
respect to the cost of bug detection. When PolySpace verification is used in
accordance with a set of coding rules, the bug detection cost is much lower.

There are three recommended ways to use PolySpace verification, during
the coding activity:

9-7

9 PolySpace™ Methodological Guide

Compared to the previous situation (where no coding rules are in place),
an additional possibility exists. Instead of reviewing only certain orange
warnings in a file, all of them are systematically checked. This is possible as
when the right coding rules are respected (see the end of this section for
recommendations). That leads to there being only a few orange checks in a
file, and therefore checking all of them is potentially very fruitful. A large
proportion of those anomalies require some correction to the code, with some
users reporting up to 50%.

Then, after coding, before the testing activity:

9-8

PolySpace™ Usage

Note It is also possible to migrate from a selective to an exhaustive orange
review when performing an integration analysis, but this activity is very
costly.

In a Certification Context
In a certification context, a “quality/qualification” approach where PolySpace
verification replaces an existing activity. In this case quality is already high
and maybe at a “zero defects” level, but PolySpace verification will reduce the
cost of achieving such quality. In this context, PolySpace verification can
replace the traditional time consuming control and data flow analysis, as
well as shared data conflict detection.

As an Acceptance Tool
The fourth and last approach implies the use of PolySpace verification as an
acceptance tool, or as a method of meeting an acceptance criterion.

9-9

9 PolySpace™ Methodological Guide

Standard Development Process

• “Overview” on page 9-10

• “The Software Development Process” on page 9-10

• “The Objective of Using PolySpace™ Verification” on page 9-11

• “The PolySpace™ Approach” on page 9-11

• “A Complementary Approach” on page 9-12

• “Integration with Configuration Management Tools” on page 9-12

• “Costs and Benefits” on page 9-13

Overview
This approach is mainly for consideration by a project manager rather than
a quality manager. It aims to improve productivity rather than to prove the
quality of the application being analyzed.

The Software Development Process
This section describes how to introduce PolySpace verification to a standard
software development process. For instance,

• In Ada, no unit test tools or coverage tools are used: functional tests are
performed just after coding

• In C, either no coding rules are present or they are not always followed.

The figure below illustrates the revised process, with PolySpace verification
introduced in the tool chain. It will be used just before functional testing.

9-10

PolySpace™ Usage

The Objective of Using PolySpace™ Verification
PolySpace verification will be used to improve the software quality and
productivity. It will help the developer to find and fix bugs much quicker than
the existing process. It will also improve the software quality by finding bugs
which would otherwise be likely to remain in the software after delivery.

It does not prove the robustness of the code because the prime objective is to
deliver code of at least similar quality to before, but to ensure that code is
produced in a predictable timeframe with controlled and minimized delay and
costs. Another approach for this purpose is described in the next section.

The PolySpace™ Approach
The way forward here is for PolySpace Desktop to be applied by developers
or testers on a file-by-file/package-by-package analysis basis. The users will
use the default PolySpace Desktop options, the most prominent feature
of which is the automatically generated “main” function. This main will call
all unused procedures and functions with full range parameters. The users
will be required to fix red errors and examine grey code, and they will also
do a selective orange review.

Cost/Benefits of a Selective Orange Review

This selective orange review can be applied on specific Run Time Error
categories, such as “Out of Bound Array Index”, or on all error categories.
This depends on each individual developers coding style.

9-11

9 PolySpace™ Methodological Guide

It is true that with this approach some bugs might remain in the unchecked
oranges, but it represents a significant move forward from the initial position.
Coding rules would help further if more improvement is sought.

A Complementary Approach
A second approach is also possible which, unlike the first, focuses only on an
increase in quality. If coding rules are applied, this second approach will
turn into a cheap and productive one as described by the second arrow on
the illustration.

Integration tests are also possible at this stage. This analysis will be
performed by PolySpace software on larger modules, and the orange review
will be focused on orange Run Time errors which were not examined after
the file-by-file/package-by-package analysis.

For instance, if the project construction is such that scalar overflows can only
be reviewed at integration phase, then

• The user will ignore orange overflows with PolySpace Desktop when
performing file-by-file analysis,

• He will examine them with PolySpace Verifier.

Integration with Configuration Management Tools
PolySpace verification can also be used by project managers to establish and
test for transition criteria to proceed to file check-in

• Daily check-in — PolySpace Desktop is applied to the file(s) currently
under development. Compilation must complete without the permissive
option.

• Pre-unit test check-in — PolySpace Desktop is applied to the file(s)
currently under development.

• Pre-integration test check-in — PolySpace Verifier is applied to the
whole project until compilation can complete without the permissive option.
This stage will differ from the daily check-in activity because link errors
will be highlighted here.

9-12

PolySpace™ Usage

• Pre-build for integration test check-in — PolySpace Verifier is applied
to the whole project, with all multi-tasking aspects accounted for as
appropriate.

• Pre-peer review check-in — PolySpace Verifier is applied to the whole
project, with all multi-tasking aspects accounted for as appropriate.

For each check-in activity mentioned above, the transition criterion could be:
“No bug found within the allocated time defined by the process”. For instance,
if the process defines that 20 minutes should be dedicated to a selective
review, the criterion could be: “no bug found during these 20 minutes”.

Costs and Benefits
Using PolySpace Desktop to find unit/local bugs in this way will both reduce
the cost of the software and improve the quality:

• Red checks and bugs in grey checks. The number of bugs found thanks to
these colors can vary from one user to another, but experience shows that
on average, around of the analyses will reveal a red error(s) and/or will
reveal bugs in grey code.

• Orange checks. Experience suggests that the time needed to find one bug
per file varies from 5 minutes to 1 hour, and is typically around 30 minutes.
This represents an average of two minutes per orange check review, and
a total of 20 orange checks per package in Ada and 60 orange checks per
file in C.

With this approach, using PolySpace verification to find integration bugs
will increase the quality, but at a higher usage cost:

• 75% of bugs are local in this type of code — the selective orange review
at integration phase reveals a of integration bugs, and the rest () of local
bugs. Finding real integration bugs might require another process which
requires coding rules to be efficient.

• Setup time — the time needed to setup the analysis can be higher due to a
lack of coding rules. Code modifications might be needed. Most of these
modifications cannot be automatic without changes in the process.

• Anomalies and complexity — In this configuration, any particular file
will contain more oranges when analyzed with PolySpace Verifier than

9-13

9 PolySpace™ Methodological Guide

with PolySpace Desktop (about twice as many). These oranges are likely to
be anomalies, and will responsible for the orange check review becoming
more time consuming.

• A more stable software version implies a later analysis — If
PolySpace Verifier is used instead of PolySpace Desktop, bugs might be
revealed much later because a more complete version of the software can
only be provided at a later phase in the project.

• An exhaustive orange review can take 25 men-days for a 50000
line project — This would represent the effort where the aspiration is for
bug free software, assuming that a 50000 line application contains about
3000 orange checks

Rigorous Development Process: Introducing Tools
and Coding Rules

• “Overview” on page 9-14

• “The Software Development Process” on page 9-14

• “The PolySpace™ Approach” on page 9-15

• “A Complementary Approach” on page 9-16

• “Costs and Benefits” on page 9-16

Overview
This is of interest for both project and quality managers, who are likely to be
interested in this approach.

The Software Development Process
This section describes how to use PolySpace verification within a process
which has the following characteristics. In Ada, unit testing tools or coverage
tools are used.

The picture below describes the new process, with PolySpace verification
introduced into the tool chain. It will be used just before functional testing.

9-14

PolySpace™ Usage

PolySpace verification will be used to increase both the software quality and
its productivity.

The PolySpace™ Approach
Use PolySpace Desktop on a file by file analysis basis.

• The “main” used to analyze each file is very often automatically
generated by the project, and not by PolySpace Desktop (unlike the
standard approach).

• Initialization ranges should be applied to input data. For instance, if a
variable “x” is read by functions in the file, and if x can be initialized to
any value between 1 and 10, this information should be included as part
of the analysis.

• [Optional] Some properties of output variables might be checked. For
instance, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace
Desktop can flag instances where that range of values might be breached.

• Red errors will be fixed and grey code examined, and an exhaustive orange
review will be completed.

• The usage of permissive options is not advisable at this stage.

Note The distinguishing feature for this approach as compared with the
standard approach is that the orange check review is exhaustive here.

9-15

9 PolySpace™ Methodological Guide

A Complementary Approach
A second approach is also possible. Use PolySpace Verifier at integration
phase to track integration bugs, and review:-

• Red and grey integration checks;

• Orange checks on code which produced green checks when analyzed by
Desktop.

• The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits
With this approach, using PolySpace Desktop to find bugs will typically bring
the following benefits

• 3-5 orange checks per file, 3 grey checks per file yielding an average of 1
bug per file. Typically, 2 of these oranges might represent the same bug,
and another might represent an anomaly.

• An average of 2 analyses by PolySpace Desktop per file is typical before the
file can be checked-in to the configuration management system.

• The average analysis time is about 15 minutes.

Note If the development process includes data rules which determine
how the data flow are designed, the benefits might even be higher. The
data rules would implicitly reduce the potential for PolySpace Verifier to
find integration bugs.

With this approach, using PolySpace verification to find integration bugs
might bring the following results. On a typical 50000 line project:

• A selective orange check review might reveal one integration bug
per hour of orange code review and takes about after 6 hours, which
long enough to review the main orange points throughout the whole
application. This represents a step towards an exhaustive orange check
review. Spending more time is unlikely to be efficient, and wont guarantee
that no bugs remain.

9-16

PolySpace™ Usage

• An exhaustive orange review takes between 4 and 6 days, given that a
50000 lines of code application might contain about 400-800 orange checks.

A Quality/Qualification Approach

• “Overview” on page 9-17

• “The Software Development Process” on page 9-17

• “The Objective of Using PolySpace™ Verification” on page 9-17

• “The PolySpace™ Approach” on page 9-18

• “Costs and Benefits” on page 9-18

Overview
Quality managers are likely to be interested in this approach.

The Software Development Process
This section describes how to use PolySpace verification within a process which
includes coding and data rules. Such a process is typical of a qualification
environment, with existing activities which must be performed. Before the
introduction of PolySpace verification, they will have been performed by hand,
with classical testing methods, or using previous generation tools. PolySpace
verification will replace these activities, and reduce the cost of the process.

PolySpace verification is not intended to improve the quality which is already
at the desired level. It will complete the same tasks more efficiently, bringing
improved productivity.

The Objective of Using PolySpace™ Verification
PolySpace verification will be used to increase the productivity on existing
activities, such as

• Data and control flow analysis

• Shared data detection

• Robustness unit tests.

9-17

9 PolySpace™ Methodological Guide

The PolySpace™ Approach
Depending on the activity replaced, both PolySpace Verifier and/or Desktop
may be useful.

• For data and control flow analysis and shared data detection. PolySpace
Verifier can be used on the whole application or on a sub-section of the
application.

• For robustness unit tests (as opposed to functional unit tests). PolySpace
Desktop might be used in the same way as the one applied to the Rigorous
development process.

Costs and Benefits
The replacement of these activities can lead to a significant cost reduction.
For instance, the time spent on data and control flow analysis can drop from
3 months to 2 weeks.

Quality will also become much more consistent since a much greater part
of the process will be automated. PolySpace tools are equally efficient on a
Friday afternoon and on a Tuesday morning!

Code Acceptance Criterion

• “Overview” on page 9-18

• “The Software Development Process” on page 9-18

• “The Objective of Using PolySpace™ Verification” on page 9-19

• “The PolySpace™ Approach” on page 9-19

Overview
This is likely to be of interest for a quality manager in a company which is
out-sourcing software development, and who wishes to impose acceptance
criteria for the code.

The Software Development Process
This section describes how to define transition criteria for intermediate or
final deliveries.

9-18

PolySpace™ Usage

The Objective of Using PolySpace™ Verification
The objective is to control and evaluate the safety of an application. The
means for doing so could vary from no red errors to exhaustive oranges review.

The PolySpace™ Approach
Either PolySpace Desktop or Verifier can be used at this stage, depending
on the project size. The example list of acceptance criteria below shows
increasingly stringent tests, any or all of which may be adopted.

• No compilation errors

• No compilation warning errors

• No red code sections

• No unjustified grey code section

• A selective/exhaustive orange review according to the development process

- 20% orange code sections reviewed or a time base threshold (described in
the previous sections)

- 100% orange code sections reviewed

• 20% concurrent access graph reviewed

• 100% concurrent access graph reviewed

9-19

9 PolySpace™ Methodological Guide

PolySpace™ Activities

In this section...

“Review Run Time Errors: Fix Red Errors” on page 9-20

“Review Dead Code Checks: Why is Grey Code Interesting” on page 9-21

“How to Find a Maximum Number of Bugs Within an Hour Reviewing
Oranges: Selective Orange Review” on page 9-23

“Cost and Benefits of an Exhaustive Orange Review at Integration Phase”
on page 9-27

“Integration Bug Tracking” on page 9-29

“How to Find Bugs in Unprotected Shared Data” on page 9-30

“Dataflow Analysis” on page 9-31

“Data and Coding Rules” on page 9-31

Review Run Time Errors: Fix Red Errors
All Run Time Errors highlighted by PolySpace™ verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”
might be performed with a resulting value of -128.

This result is of course mathematically incorrect. If the value represents the
altitude of a plane, this could result in a disaster.

By default, PolySpace verification doesn’t make assumptions about the way a
variable is used. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

PolySpace verification identifies two kinds of red checks

• Red errors which are compiler-dependant in a specific way. On some
occasions a PolySpace option may be used to allow particular compiler

9-20

PolySpace™ Activities

specific behavior, and on others the code must be corrected in order to
comply. An example of a PolySpace option to permit compiler specific
behavior would be the option to force “IN/OUT” ADA function parameters
to be initialized. Examples in C include options to deal with constant
overflows, shift operation on negative values, etc.

• All other red errors must be fixed. They are bugs.

Most of the bugs you’ll find are easy to correct once they are identified.
PolySpace verification identifies bugs irrespective of their consequence, or of
the ease with which they can be corrected.

Review Dead Code Checks: Why is Grey Code
Interesting

• “Functional Bugs Can Be Found in Grey Code” on page 9-21

• “Structural Coverage” on page 9-22

Functional Bugs Can Be Found in Grey Code
PolySpace verification finds different types of dead code. Common examples
include:

• Defensive code which is never reached

• Dead code due to a particular configuration

• Libraries which are not used to their full extent in a particular context

• Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical
applications of embedded software by PolySpace verification.

• A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

• Consider a line of code such as

IF NOT a AND b OR c AND d

9-21

9 PolySpace™ Methodological Guide

Now consider how misplaced parentheses might influence how that line
behaves

IF NOT (a AND b OR c AND d)

IF (NOT (a) AND b) OR (c AND d))

IF NOT (a AND (b OR c) AND d)

• The test of variable inside a branch where the conditions are never met;

• An unreachable “else” clause where the wrong variable is tested in the
“if” statement

• A variable that is supposed to be local to the file but instead is local to
the function

• Wrong variable prototyping leading to a comparison which is always false
(say)

As is the case for red errors, the consequence of dead code and the effort
needed to deal with it is unpredictable. It can vary

• From one week effort of functional testing on target, trying to build a
scenario going into that branch, and wondering why the functional behavior
is altered, to

• A 3 minutes code review discovering the bug.

Again, as for red errors, PolySpace Verifier doesn’t measure the impact of
dead code.

The tool provides a list of dead code. A short code review will enable you
to place each entry from that list into one of the five categories from the
beginning of this chapter. Doing will identify known dead code and uncover
real bugs.

PolySpace experience is that at least 30% of grey code reveals real
bugs.

Structural Coverage
PolySpace software always performs upper approximations of all possible
executions. Therefore even if a line of code is shown in green, there remains a

9-22

PolySpace™ Activities

possibility that it is a dead portion of code. Because PolySpace verification
made an upper approximation, it could not conclude that the code was dead,
but it could conclude that no run time error could be found.

PolySpace verification will find around 80% of dead code that the developer
would find by doing structural coverage.

PolySpace verification is intended to be used as a productivity aid in dead
code detection. It detects dead code which might take days of effort to find
by any other means.

How to Find a Maximum Number of Bugs Within an
Hour Reviewing Oranges: Selective Orange Review

• “Overview” on page 9-23

• “How” on page 9-24

• “Why” on page 9-24

• “In Practice” on page 9-24

• “Step by Step” on page 9-24

• “Which Category of Checks Should I Choose First” on page 9-25

• “Exhaustive Orange Review at Unit Phase” on page 9-26

Overview

Note Before reading this section, it is necessary to understand how the user
might conclude the status of an orange check. This is explained in a later
section.

Suppose, for example, that the user wishes to spend the first hour of the day
reviewing an analysis which was performed overnight. This is an approach
which can be adopted to enhance the quality of code under development,
perhaps supported by more extensive analysis as the project nears completion.

9-23

9 PolySpace™ Methodological Guide

Experience suggests that such an approach can highlight 5 bugs in orange
checks in such a timescale: “finding 5 bugs an hour”

How
Focus on modules which have the highest selectivity in the application, where
selectivity is the ratio of (green + grey + red) / (total number of checks)

• Spend no more than 5 minutes per orange check.

• Review at least 50 checks an hour.

Why
If PolySpace verification finds only one or two orange checks in a module or
function, there is a very good possibility that they are not caused by “basic
imprecision”. Consequently, the concentration of bugs in orange checks here
will be higher than in those found elsewhere in the code.

If you come across an orange check which takes more than a few minutes to
understand, it might well be the result of inconclusive PolySpace analysis. To
optimize the number of bugs found in a limited time, you should move on to
another check. A good rule of thumb is to spend no more than 5 minutes on
each check, remembering that the goal is to review at least 50 checks per hour
to maximize the number of bugs found.

In Practice
For any particular function, PolySpace verification may better at detecting
some kinds of Run Time Errors than others. For instance, the analysis of one
function may yield imprecise results from the analysis of Non Initialized
Variables (NIV) but very precise results from the analysis of overflows
(OVFL). In the analysis of another function, the precise opposite may be true.

So, the “high selectivity focus” should be applied to each Run Time Error
category separately.

Step by Step

1 Select one type of RTE, such as Zero Division (ZDV).

9-24

PolySpace™ Activities

2 Click on

3 Click on the check type of interest (ZDV in the example).

4 Choose files/packages containing only 1 or 2 orange checks of the selected
kind.

5 Proceed with a quick code review on each orange check, spending no
more than 5 minutes on each. The goal is to identify the orange check as
a potential bug, inconclusive check or data set issue, navigating the code
using the call tree and the dictionary. If the check proves too complicated to
explain, it may well be the result of basic imprecision.

6 Once this job done, the user can select the “Verified” checkbox in the
PolySpace Viewer, and put an explanation of the check in the comment
field (for instance, “inconclusive”, or “data set issue” when calibration of
<x> is set greater than 100”,)

7 Select another type of RTE and repeat the procedure.

Which Category of Checks Should I Choose First
The following sequence is recommended.

1 Start with the four categories found to be the most likely to yield bugs,
which are described in the following sections.

2 Next, use the Beta filter which will highlight the remaining categories most
likely to include any remaining critical Run Time Errors.

3 Finally, complete the remaining checks as time permits.

The impact made by the use of C coding rules is huge, because they reduce
complexity - a key factor in limiting orange checks due to basic imprecision.
The C constructions impacting each of the four are listed below.

9-25

9 PolySpace™ Methodological Guide

• Potential bug or data set issue. These are orange checks representing
genuine problems.

• Inconclusive check. These are orange checks which mostly highlight
design issues, not addressed by this section.

• Basic imprecision.

- Unspecified Standard behavior

- Complexity

- Approximations made by the tool on specific constructions

MISRA® rules have a huge impact on complexity and all unspecified ANSI®

behavior. Some details of approximations made by the tool are discussed
following the section discussing MISRA rules.

Exhaustive Orange Review at Unit Phase

• “Without Coding Rules” on page 9-26

• “With Coding Rules” on page 9-27

Without Coding Rules. An exhaustive orange review progresses at a typical
rate of 50 orange checks per hour. An hour spent on an exhaustive check
review is different to an hour spent on a selective orange review in several
significant ways.

Time:

• The first 10 minutes of the exhaustive check will be dedicated to the
classification of 2/3 of the orange as false anomalies.

• The last 40 minutes will be used to track more complex bugs.

Cost:

• 80% of the orange checks will require only a few seconds of effort before a
conclusion can be reached. These are not integration bugs, so tracking the
cause of an orange check is often much faster than the same activity in a
larger piece of code.

9-26

PolySpace™ Activities

• The typical time spent reviewing each orange check would be about 1
minute.

With Coding Rules. The number of spurious orange checks per file
strongly depends on coding styles within the project. The following coding
rules are recommended, as are a subset of MISRA rules.

If the code follows the recommended MISRA subset, the count of checks per
file will typically decrease to 3 orange and 3 grey checks, hiding at least
one bug between them.

The review of the PolySpace results generated by a unit analysis would
normally take no more than 15 minutes.

Cost and Benefits of an Exhaustive Orange Review
at Integration Phase

• “Benefits” on page 9-27

• “Costs” on page 9-27

• “Method” on page 9-28

Benefits
The purpose of this activity is to assess the probability of missing an orange
containing a bug when performing a “selective orange review”. This needs to
be balanced with the cost of a bug left in the code.

Costs
Experience suggests that an average of 4-5 minutes reviewing time per
orange check is typical. Four hundred (400) such checks will require 4 days
of code review whereas a three thousands (3000) orange review will require
25 days.

If the checks are reviewed in the sequence suggested by the selective review
approach, then the first 80% of these checks will take a disproportionately
small amount of time.

9-27

9 PolySpace™ Methodological Guide

Method
There are sometimes situations where files contain a particularly high
number of orange checks compared with the rest of the application. This may
well highlight design issues.

Consider the three possible reasons for an orange check:

• Potential bug and Data set issues

• Inconclusive analysis

• Data set issue

• Basic imprecision

The method described in the following chapter explains how to focus on
finding potential bugs in the orange code. We will focus here on the first
and second types. We are assuming that in the modules containing the most
orange checks, those checks will prove inconclusive. If PolySpace verification
is unable to draw a conclusion, the implication is often that the code itself is
very complex — which in turn can identify sections of code of low robustness
and quality.

Inconclusive. The most interesting type of inconclusive check is identified
when PolySpace verification states that the code is too complicated. In such a
case it is usually true that most orange checks in the problem file are related,
and that patient navigation will always draw the user back to a same cause —
perhaps a function or a variable modified many times. Experience suggests
that such situations often focus on functions or variables which have also
caused trouble earlier in the development cycle.

Consider an example below. Suppose that

• a signed is an integer between -2^31 and 2^31-1

• an unsigned is an integer between 0 and 2^32-1

• The variable "Computed_Speed" is copied into a signed, and afterward
into an unsigned, than signed, than added to another variable, and finally
produces 20 orange overflows (OVFL).

9-28

PolySpace™ Activities

There is no scenario identified which leads to a real bug, but perhaps the
development team knows that there was trouble with this variable during
development and the earlier testing phases. PolySpace software has also
found this to be a problem, providing supporting evidence that the code is
poorly designed.

Basic Imprecision. On some rare occasions, a module will contain a lot of
similar occurrences of a “basic imprecision”. This is most likely to be caused
by a function close to the edge of an application, or in the stub routines.

In this case, PolySpace verification can only assist by means of the call tree
and dictionary. This code needs to be reviewed by an alternative activity
- perhaps through additional unit tests or code review with the developer.
These checks are usually local to functions, so their impact on the project
as a whole is limited.

Examples of extra activities might be

• Checking an interpolation algorithm in a function

• Checking calibration data consisting of huge constant arrays, which are
manipulated mathematically

Real Bugs and Data Sets. If the data set analyzed reveals real bugs, they
should be corrected If it highlights potential input bugs (depending on the
input data which might eventually be used) then the source code should be
commented.

Integration Bug Tracking
By default, integration bug tracking can be achieved by applying the selective
orange methodology to integrated code. Each error category will be more
likely to reveal integration bugs, depending on the chosen coding rules for
the project.

For instance, consider a function receives two unbounded integers. The
presence of an overflow can only be checked at integration phase, since at unit
phase the first mathematical operation will reveal an orange check.

Consider these two circumstances:

9-29

9 PolySpace™ Methodological Guide

• Where integration bug tracking is performed in isolation, a selective orange
review will highlight most integration bugs. In this case a PolySpace
Verifier analysis has been performed integrating tasks.

• Where integration bug tracking is performed together with an exhaustive
orange review at unit phase. In this case a PolySpace Desktop analysis has
been performed on one or more packages.

In this second case, an exhaustive orange review will already have been
performed package by package at a unit level. Therefore, at integration
phase only checks that have turned from green to another color are
worth assessing.

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This will consequentially display a green NIV check at the first read access to
a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks will reveal integration bugs.

How to Find Bugs in Unprotected Shared Data
Based on the list of entry points in a multi-task application, PolySpace
verification identifies a list of shared data and provides several pieces of
information about each entry:

• The data type;

• A list of reading and writing accesses to the data through functions and
entry points;

• The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent accesses when one task
can access it whilst another task is in the process of doing so. All the possible
situations are considered below.

• If there is a possible scenario which would lead to such conflict for a
particular variable, then a bug exists and protection is required.

9-30

PolySpace™ Activities

• If there are no such scenarios, then one of the following explanations may
apply:

- The compilation environment guarantees an atomic read/write access on
variable of type less than 1, 2 bytes, and therefore all conflicts concerning
a particular variable type still guarantee the integrity of the variables
content. But beware when porting the code!

- The variable is protected by a critical section or a mutual temporal
exclusion. You may wish to include this information in the PolySpace
Verifier launching parameters and reanalyze.

It is also worth checking whether variables are modified which are supposed
to be constant. Use the variables dictionary.

Dataflow Analysis
Data flow analysis is often performed within certification processes —
typically in the avionic, aerospace or transport markets.

This activity makes heavy use of two features of PolySpace results, which are
available any time after the Control and Data Flow analysis phase.

• Call tree computation

• Dictionary containing read/write access to global variables. (This can also
be used to build a database listing for each procedure, for its parameters,
and for its variables.)

PolySpace software can help you to build theses results by extracting
information from both the call tree and the dictionary.

Data and Coding Rules
Data rules are design rules which dictate how modules and/or files interact
with each other.

For instance, consider global variables. It is not always apparent which global
variables are produced by a given file, or which global variables are used by
that file. The excessive use of global variables can lead to resulting problems
in a design, such as:

9-31

9 PolySpace™ Methodological Guide

• File APIs (or function accessible from outside the file) with no procedure
parameters;

• The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and/or output
values.

9-32

Automatically Testing Orange Code

Automatically Testing Orange Code

In this section...

“PolySpace™ Automatic Orange Tester” on page 9-33

“Using the Automatic Orange Tester” on page 9-35

“Technical Limitations” on page 9-52

PolySpace™ Automatic Orange Tester
The PolySpace™ Automatic Orange Tester dynamically analyzes unproven
code (orange checks) to identify runtime errors, and provides information to
help you identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
module of PolySpace™ Client™ for C/C++. Manually performing an exhaustive
orange review can be time consuming. The Automatic Orange Tester saves
time by automatically creating test cases for all input variables in orange
code, and then dynamically testing the code to find actual runtime errors.

The Automatic Orange Tester also provides detailed information on why each
test-case failed, including the actual values that caused the error. You can use
this information to quickly identify the cause of the error, and determine if
there is an actual bug in the code.

9-33

9 PolySpace™ Methodological Guide

PolySpace™ Automatic Orange Tester

9-34

Automatically Testing Orange Code

How the Automatic Orange Tester Works
PolySpace verification mathematically analyzes the operations in the code to
derive its dynamic properties without actually executing it (see Appendix A,
“Static Verification”). While this verification can identify almost all runtime
errors, some operations cannot be proved either true or false because the input
values are unknown. These are reported as Orange checks in the Viewer (see
“What is an Orange?” on page 9-65).

The Automatic Orange Tester takes the PolySpace verification results, and
generates instrumented code around orange checks so the code can be run. It
then generates test cases based on the input variables, and dynamically tests
the code for runtime errors.

This dynamic testing approach allows the Automatic Orange Tester to
separate actual runtime errors from theoretical problems. You can then focus
on these errors to determine if an orange check is identifying an actual bug.

Limitations of Dynamic Testing
Because the Automatic Orange Tester uses a finite number of test cases to
analyze the code, there is no guarantee that it will identify a problem in any
individual test campaign. It is therefore possible that a particular variable
value causes an error, but that value was never tested.

Similarly, since the Automatic Orange Tester builds test cases each time
your run it, there is not guarantee that it will produce the same results with
each test campaign.

You can specify the number of tests to run in each test campaign. Running
more tests increases the chances of finding a runtime error, but also takes
more time to complete.

9-35

9 PolySpace™ Methodological Guide

Using the Automatic Orange Tester
This section describes how to use the Automatic Orange Tester. It describes:

• “Before Using the Automatic Orange Tester” on page 9-36

• “Launching the Automatic Orange Tester” on page 9-37

• “Reviewing the Test Results” on page 9-41

• “Refining Data Ranges” on page 9-45

• “Saving and Reusing Your Configuration” on page 9-50

• “Exporting Data Ranges for PolySpace™ Verification” on page 9-50

• “Configuring Compiler Options” on page 9-51

Before Using the Automatic Orange Tester
Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To run the verification:

1 Open the PolySpace Launcher for C.

2 Load the project Demo_C-without-MISRA-checker.cfg.

3 In the Analysis Options window, expand the PolySpace inner settings
menu.

4 Select the Automatic Orange Tester check box.

9-36

Automatically Testing Orange Code

The -prepare-automatic-tests option is enabled.

5 Deselect Send to PolySpace Server.

6 Click Execute.

The PolySpace verification starts. During the compilation phase, the
software generates the data necessary to perform dynamic tests. The
PolySpace verification then continues as usual.

When the verification process completes, the software asks if you want to
launch PolySpace Viewer.

7 Click OK to launch the viewer.

Launching the Automatic Orange Tester
Once the PolySpace verification is complete, you can use the Automatic
Orange Tester to perform dynamic tests of the unproven (orange) code.

To perform dynamic tests with the Automatic Orange Tester:

1 Open your results in the PolySpace Viewer.

9-37

9 PolySpace™ Methodological Guide

9-38

Automatically Testing Orange Code

2 Click (Launch the PolySpace Automatic Orange Tester) in the toolbar
to open the Automatic Orange Tester.

The Automatic Orange Tester opens.

3 In the Test Campaign Configuration window, specify the following
parameters:

9-39

9 PolySpace™ Methodological Guide

• Number of tests – Specifies the total number of test cases you want to
run. Running more tests increases the chances of finding a runtime
error, but also takes more time to complete.

• Number of iterations for infinite loops – Specifies the maximum
number of loop iterations to perform before the Automatic Orange Tester
identifies an infinite loop. A larger number of iterations decreases the
chances of incorrectly identifying an infinite loop, but also may take
more time to complete.

• Per test timeout – Specifies he maximum time that an individual test
can run (in seconds) before the Automatic Orange Tester moves on to the
next test. Increasing the time limit reduces the number of tests that
timeout, but can also increases the total analysis time.

4 Click Start to begin testing.

The Automatic Orange Tester generates test cases and runs the dynamic
tests.

9-40

Automatically Testing Orange Code

5 If you want to stop the testing before it completes:

• Click Stop Current to stop the current test an move on to the next one.

• Click Stop All to immediately stop all tests.

9-41

9 PolySpace™ Methodological Guide

Reviewing the Test Results
When testing is complete, the Automatic Orange Tester displays an overview
of the testing results, along with detailed information about each failed test.

Test Campaign Results. The Test Campaign Results window displays
overview information about the results of your dynamic tests, including:

• Completed tests – Displays the total number of tests completed.

• No PolySpace run-time errors detected – Displays the number of tests
that did not produce a runtime error.

• Total failed – Displays the number of tests that produced a runtime error.

• Number of checks/Tests with errors – Displays the number of
PolySpace checks that produced at least one failed test, as well as the total
number of tests that produced a runtime error.

• Timeout – Displays the number of tests that exceeded the specified Per
test timeout limit.

9-42

Automatically Testing Orange Code

• Stopped tests – The number of tests that were stopped manually.

Use the Test Campaign Results Window to see an overall assessment of
your test results, as well as to decide if you need to increase the Per test
timeout value.

Results Table. The Results table displays detailed information about
each failed test, to help you identify the cause of the runtime error. This
information includes:

• The filename, line number, and column in which the error was found.

• The type of error that occurred.

• The number of test cases in which the error occurred.

In addition, You can view more details about any failed test by clicking on the
appropriate row in the Results table. The Test Case Detail dialog box opens.

9-43

9 PolySpace™ Methodological Guide

The Test Case Detail dialog box displays the portion of the code in which the
error occurred, and gives detailed information about why each test case failed.
Since the Automatic Orange Tester performs runtime tests, this information
includes the actual values that caused the error.

You can use this information to quickly identify the cause of the error, and
determine if there is an actual bug in the code.

9-44

Automatically Testing Orange Code

Log. The Log window displays a complete list of all the tests which failed, as
well as summary information.

You can copy information from the log window to paste into other applications,
such as Microsoft® Excel®.

The log file is also saved in the PolySpace-Instrumented directory with the
following filename:
TestGenerator_day_month_year-time.out

Refining Data Ranges
The Automatic Orange Tester allows you to specify ranges for external
variables. This allows you to perform runtime tests using real-world values
for your variables, rather than randomly selected values.

9-45

9 PolySpace™ Methodological Guide

Setting ranges for your variables reduces the number of tests that fail due to
unrealistic data values, allowing you to focus on actual problems, rather than
purely theoretical problems.

To refine your data ranges:

1 In the Variables section at the top of the Automatic Orange Tester, identify
the variable for which you want to set a data range.

9-46

Automatically Testing Orange Code

2 Select Advanced. The Edit Values dialog box opens.

3 Set the appropriate values for the variable:

Single Value – Specifies a constant value for the variable.

Range of values, – Specifies a minimum and maximum value for the
variable.

Note For pointers, you can also specify the writing mode:

SING – The tests only write the object or first element in the array.

MULT – The tests write the complete object, or all elements in the array.

9-47

9 PolySpace™ Methodological Guide

4 Click Next to edit the values for the next variable.

5 When you have finished setting values, click OK to save your changes
and close the Edit Values dialog box.

6 Click Start to re-test the code.

The Automatic Orange Tester generates test cases, runs the tests, and
displays the updated results.

9-48

Automatically Testing Orange Code

The updated results show fewer failed tests, allowing you to focus in on
any actual code problems.

9-49

9 PolySpace™ Methodological Guide

Saving and Reusing Your Configuration
You can save your Automatic Orange Tester preferences and variable ranges
for use in future dynamic testing.

To save your configuration:

1 Select File > Save.

2 Enter an appropriate name and click Save.

Your configuration is saved in a .tgf file.

To open a configuration from a previous analysis:

1 Select File > Open.

2 Select the appropriate .tgf file, then click Open.

The configuration is opened.

When you open a previously saved configuration, the Log window displays
any differences in the configuration files. For example:

• If a variable does not exist in the new configuration, a warning is displayed.

• If the ranges for a variable are no longer valid (if the variable type changes,
for example), a warning is displayed and the range is changed to the largest
valid range for the new data type (if possible).

Exporting Data Ranges for PolySpace™ Verification
Once you have set the data ranges for your variables, you can export them to a
Data Range Specifications (DRS) file for use in future PolySpace verifications.
This allows you to reduce the number of orange checks identified in the
PolySpace Viewer.

To export your data ranges:

1 Set the appropriate values for each variable you want to specify.

2 Select File > Export DRS.

9-50

Automatically Testing Orange Code

3 Enter an appropriate name and click Save.

The DRS file is saved.

For information on using a DRS file for PolySpace Analysis, see Chapter 6,
“Data Range Specifications”.

Configuring Compiler Options
On UNIX®, Solaris™, or Linux® systems, you must configure your compiler
and linker options before using the Automatic Orange Tester.

Note On Windows® systems, the compiler options cannot be modified. You
can only configure the library dependencies.

To set compiler and linker options:

1 Open the Automatic Orange Tester, as described above.

2 Select Options > Configure.

3 The Preferences dialog box opens.

9-51

9 PolySpace™ Methodological Guide

4 Set the appropriate parameters for your compiler.

9-52

Automatically Testing Orange Code

Technical Limitations
The Automatic Orange Tester has the following limitations:

• “Unsupported PolySpace™ Options” on page 9-53

• “Options with Limitations” on page 9-53

• “Unsupported C Language Constructions” on page 9-54

Unsupported PolySpace™ Options
The following options are not supported when you select
-prepare-automatic-tests.

• -entry-points

• -dialect

• -ignore-float-rounding

• -div-round-down

• -entry-points

• -char-is-16its

• -short-is-8bits

• -respect-types-in-globals

• -respect-types-in-fields

In addition, Global asserts in the code of the form Pst_Global_Assert(A,B)
are not supported with the Automatic Orange Tester.

Options with Limitations
The following options cannot take specific values when you select
-prepare-automatic-tests.

• -align [8|16]

• -target [c-167 | tms320c3c | hc08 | sharc21x61]

• -data-range-specification (in global assert mode)

9-53

9 PolySpace™ Methodological Guide

The endianess of a target is not managed. The analysis is performed as if the
user-defined target has the same endianess as the operating system.

In addition, when using the Automatic Orange Tester, the -target mcpu
option must be used together with -pointer-is-32bits.

Unsupported C Language Constructions
The code verification stops when any of the following characteristics are met:

• Referenced absolute address is not supported

• ANSI® C99 long long and long double types are unsupported for Windows
systems

• Calls to following routines are unsupported:

- va_start

- va_arg

- va_end

- va_copy

- setjmp

- sigsetjmp

- longjmp

- siglongjmp

The following C language constructions are ignored:

• The endianness of the target is not managed. The tests are performed as if
the user-defined target has the same endianness as the hardware on which
the Automatic Orange Tester is running

• Calls to the following routines are ignored:

- signal

- sigset

- sighold

- sigrelse

9-54

Automatically Testing Orange Code

- sigpause

- sigignore

- sigaction

- sigpending

- sigsuspend

- sigvec

- sigblock

- sigsetmask

- sigprocmask

- siginterrupt

- srand

- srandom

- initstate

- setstate

9-55

9 PolySpace™ Methodological Guide

How to Get the Best Results

In this section...

“Reduce Oranges Step by Step” on page 9-56

“Generic Objectives: A Balance Between Precision and Analysis Time”
on page 9-56

“Options at Launching Time” on page 9-58

“How to Conclude an Orange Review” on page 9-64

“Duration of Analysis” on page 9-68

Reduce Oranges Step by Step
Although PolySpace™ verification is effective and straightforward to launch
with the minimum of effort, you may find that some applications would
benefit from some code preparation in order to streamline the job of working
through the resulting orange checks. There are four primary approaches
which may be adopted in isolation or in combination.

• Apply some recommended coding rules. This is the most efficient means
to reduce oranges.

• Implement manual stubbing of previously missing (and therefore
automatically stubbed) functions.

• Specify call sequences with care.

• Constrain some data assignments. Conventional testing analyses a single
set of data, whereas PolySpace software can analyze your module for
problems by taking into account all possible data values. If the range of
possible values is specified more precisely than the default “full range”
approach, then there will be less “noise” in the form of orange checks
resulting from “impossible” values.

Generic Objectives: A Balance Between Precision
and Analysis Time
The methodology objective is quite simple: “To get the most precise results
in the time available”.

9-56

How to Get the Best Results

PolySpace verification needs to be fast and precise.

• If an analysis takes an eternity and the results contain the maximum
possible number of grey, red and green checks, this analysis is not useful
because of the time spent waiting for the results.

• If an analysis is very quick but contains only oranges, the analysis wont be
very useful because of the large number of manual checks to be performed.

Using PolySpace verification is a compromise between analysis time and
precision. Factors such as the amount of time the developer has to assign to
using PolySpace software, and the stage in the V cycle also influence the
compromise. Consider for example the following scenarios that require the
PolySpace software to be used in different ways:

• Unit testing phase: before going to lunch, a developer starts an analysis.
After returning from lunch the developer will analyze PolySpace results for
a maximum of one hour.

• Integration/module testing: before going home, a developer starts an
analysis and will spend the next morning analyzing the results.

• Validation/acceptance testing: the developer leaves the office on Friday
evening and starts an analysis. The developer will spend the following
week analyzing the results.

Note So analysis time and precision depends on how long the developer
wants to wait for the results and the amount of time available to review the
results. It can happen that an analysis never ends. The user might need to
split his application.

Note With knowledge of the tool, users will choose one of the four precision,
-quick (PolySpace for C only), -O0, -O1,-O2, or -O3 options before applying it
to their process. It is implicit that a higher precision will require a longer
analysis time - but will yield more red, green and grey code and fewer oranges.

Most of the time, the first analysis should be in “-quick” mode.

9-57

9 PolySpace™ Methodological Guide

Note All activities and methods relating to results analysis remain
unchanged irrespective of the precision selected (-O0, -O1,-O2 or -O3 in Ada
and C, and -quick in C).

Options at Launching Time

• “Vary the Precision Level” on page 9-58

• “Apply Software Safety Level Wisely” on page 9-59

• “Add Precision Constraints at the Periphery Via Stubs” on page 9-61

• “Describe Multitasking Behavior Properly” on page 9-63

• “Tuning Advanced Parameters” on page 9-64

Vary the Precision Level
One way to affect precision is to select the algorithm that will be used to model
the cloud of points. The exact method of modelling is managed internally, but
you can influence it by selecting the -quick (only in C or C++ language), -O0,
-O1, -O2 or -O3 precision level. You can also select a particular precision for a
specific body (in Ada) or a C file (in C).

The methods used by Verifier to represent the data internally are reflected in
the level of precision to be seen in the results. As illustrated below, the same
orange check which results from a low precision analysis will become green
when analyzed at a higher precision.

9-58

How to Get the Best Results

Vary the Precision Rate

Apply Software Safety Level Wisely

Abstract. What are the differences between analysis levels

Explanation. There follows an example of the distinction between Safety
Analysis levels 1, 2 and 3. The deeper the analysis goes, the more precise it is.
Depending on the backward/forward dependencies, oranges will be solved at
the Safety Analysis level 1, and some later in level 2 or 3.

• One way to effect precision is to select which algorithm will model
your cloud of points. The modelling is internal, and represented by a
precision level ranging from 0 to 2. You can select a particular precision
level for a specific body, which might differ from the default value for the
rest of the code.

9-59

9 PolySpace™ Methodological Guide

• The level of an analysis is the depth of analysis of PolySpace
Verification. It starts with Safety Analysis 1 (which approximates to
unit analysis) and normally goes up to level 4 (although it can go further
if exceptional circumstances require it). Each iteration corresponds to a
deeper level of propagation of calling and called context, as illustrated
below. A level of iteration is selected for the whole application and unlike
the precision level, it cannot be varied on a body-by-body basis.

PolySpace verification performs 4 levels of Software Safety Analysis by
default. Below is an example of the distinction between Safety Analysis levels
1, 2 and 3; the deeper the analysis goes, the more precise it is. Depending on
the backward/forward dependencies, oranges will be resolved into red, green
or grey at the Safety Analysis level 1 or later in level 2, 3 or 4.

The level of an analysis represents the number of iterations performed
by PolySpace verification. Each iteration corresponds to a deeper level of
propagation of calling and called contexts. As an example, a division by
an input parameter of a function might produce an orange during Level 1
analysis and then subsequently turn into green during level 2 or 3. PolySpace
software gains a more accurate knowledge of x when the value is propagated
deeper. Unlike the precision which is tuned for specific modules, the level of
safety analysis is set for the whole application.

9-60

How to Get the Best Results

Safety Analysis Level 1 Safety Analysis Level 2 Safety Analysis Level 3

void ratio
(float x, float *y)

{
*y=(abs(x-*y))/(x+*y);
}
void level1 (float x,
float y, float *t)
{ float v;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}
float level2(float v)
{
float t;
t = v;
level1(0.0, 1.0, &t);
return t;

}
void main(void)
{
float r,d;
d= level2(1.0);
r = 1.0 / (2.0 - d);

}

void ratio
(float x, float *y)

{
*y=(abs(x-*y))/(x+*y);
}
void level1 (float x,
float y, float *t)
{ float v;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}
float level2(float v)
{
float t;
t = v;
level1(0.0, 1.0, &t);
return t;

}
void main(void)
{
float r,d;
d= level2(1.0);
r = 1.0 / (2.0 - d);

}

void ratio
(float x, float *y)

{
*y=(abs(x-*y))/(x+*y);
}
void level1 (float x,
float y, float *t)
{ float v;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}
float level2(float v)
{
float t;
t = v;
level1(0.0, 1.0, &t);
return t;

}
void main(void)
{
float r,d;
d= level2(1.0);
r = 1.0 / (2.0 - d);

}

Add Precision Constraints at the Periphery Via Stubs
Another mean to increase the selectivity is to indicate PolySpace Desktop that
some variables (detailed here after) might vary between some functional
ranges instead of the full range of the considered type.

It concerns mainly two items from the language

• Parameters passed to functions.

9-61

9 PolySpace™ Methodological Guide

• Variables content, mostly globals, which might change from one execution to
another: typically, calibration data, mission specific data. These variables
might be read directly within the code, or read through an API of functions.

Reduce the cloud of points. Stubs do not need to model the details of the
functions or procedures involved. They only need to represent the effect that
the code might have on the remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

Given that Verifier models data ranges throughout the code it analyses, it
will obviously produce more precise, informative results, - provided that the
data it considers from the “outside world” is representative of the data that
can be expected when the code is implemented. There is a certain number
of mechanisms available to model such a data range within the code itself,
and three possible approaches are presented here. There is no particular
advantage in using one approach or another (except, perhaps, that the
assertions in the first two will usually generate orange checks) – it is largely
down to personal preference.

with volatile and assert with assert and without
volatile

without assert, without
volatile, without "if"

#include <assert.h>

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);

return

#include <assert.h>

extern int other_func(void);

int stub(void)

{

int tmp;

tmp= other_func();

assert(tmp>=1 && tmp<=10);

return

}

extern int other_func(void);

int stub(void)

{

int tmp;

do {tmp= other_func();}

while (tmp<1 || tmp>10);

return tmp;

}

9-62

How to Get the Best Results

Increase the Number of Red and Green Checks. This example shows a
header for a missing function (which might occur, for example, if the code is an
incomplete subset of a project). The missing function copies the value of the src
parameter to dest and so there would be a division by zero (RTE) at run time.

int a,b;
int *ptr;
void a_missing_function(int *dest, int src);
/* should copy src into dest */
void main(void)
{
a = 1;
b = 0;
a_missing_function(&a, b);
b = 1 / a;

}

• By relying on the PolySpace default stub, the division is shown with an
orange warning because a is assumed to be anywhere in the full permissible
integer range (including 0)

• If the function was commented out, then the division would be green.

• A red division could only be achieved with a manual stub.

Applying fine-level modelling of constraints in primitives and outside
functions at the application periphery will propagate more precision
throughout the application, which will result in a higher selectivity rate (more
proven colors, i.e. more red+ green + grey)

Describe Multitasking Behavior Properly
The proper description of the asynchronous characteristics of the application
(implicit task declarations, mutual exclusion, critical sections) is necessary if
the best results are to be achieved with PolySpace Verifier.

Consider two tasks T1 and T2 and a shared variable X set to 0 at initialization
phase:

• T1 sets X to 12

• T2 divides by X

9-63

9 PolySpace™ Methodological Guide

Because the task T1 can be started before or after T2, the division is orange.
Modelling the task differently could turn this orange check green or red.

You can refer to “My Code is Multitasking” on page 3-69 for a complete
description of tasking facilities. These include

• Shared variable protection:

- Critical sections,

- Mutual exclusion,

- Access pattern,

- Tasks synchronization,

- Rendez-vous (for Ada only),

• Tasking:

- Threads, interruptions,

- Synchronous/asynchronous events,

- Real-time OS.

Tuning Advanced Parameters
The Advanced Parameters provide a degree of control over some aspects of
PolySpace internal tuning. These are provided to allow the user to concentrate
analysis time on specific aspects of the software. For example, the user can
decide whether or not to expand arrays and records by modelling each element
as a separate variable.

Theses options are specific to each language. Refer to “Precision/Scaling” on
page 10-47.

-O(0-3)
-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]

How to Conclude an Orange Review

• “What is an Orange?” on page 9-65

• “What are the Different Sources of Oranges?” on page 9-66

9-64

How to Get the Best Results

• “How to Determine the Cause of an Orange?” on page 9-67

What is an Orange?
If a check is orange, it means that the approximate data set assumed by the
analysis to represent a variable intersects with the error zone.

Graphical Representation of an Orange Check

Behind this picture, the orange color can reveal any of the situations below.

Note Any an orange check can approximate a check of any other color.

9-65

9 PolySpace™ Methodological Guide

Red
approximated
by orange

Grey
approximated by
orange

Any other
situation: real
orange

Green
approximated by
orange

If PolySpace software attempted to manipulate every possible discrete value
for all variables, the overheads for the analysis would be so large that the
problem would become incomputable. PolySpace verification manipulates
polyhedrons representing data sets, and therefore cannot distinguish the
category of an orange. That task is left to you, and is detailed in the following
chapters.

(As a consequence, sometimes you may find an orange check which represents
something which seems an obvious bug, and at other times you may find such
a check which is obviously safe. As far as the mechanism within PolySpace
software is concerned, it simply represents the intersection of two data sets
– which is why you are left to perform the results review to draw these
distinctions.)

What are the Different Sources of Oranges?
There are a number of possible causes of orange checks to be considered.

• Potential bug — an orange check can represent a real bug.

Example - loop with division by zero

• Inconclusive check — an orange check can represent a situation where
PolySpace verification is unable to conclude whether a problem exists. It
is sometimes in the nature of software code that it cannot be concluded

9-66

How to Get the Best Results

whether there is a potential error. In the example below, the task T1 can
be started before or after T2, so PolySpace verification cannot conclude
without the calling sequence being defined.

- Consider a variable X initialized to 0, and two concurrent tasks T1
and T2.

- Suppose that T1 assigns a value of 12 to variable X

- Now suppose that T2 divides a local variable by X. The division is shown
as an orange check because T1 can be started before or after T2 (so a
division by zero is possible).

• Data set issue — an orange check resulting from a theoretical set of data.
PolySpace verification considers all combinations of input data rather than
one particular combination (that is, it uses an upper approximation of
the data set). Therefore a check may be colored orange as the result of a
combination of input values which is analyzed by PolySpace, but which will
not be possible at execution time.

- Consider three variables X, Y and Z which can vary between 1 and 1000

- Now suppose that the code computes a value of X*Y*Z on a type 16 bits.
The result can potentially overflow. It may be known when the code is
developed that the variables cant all take the value 1000 at the same
time, but this information is not available to PolySpace software. The
code will be colored orange, accordingly.

• Basic imprecision — an orange check can be due to an imprecise
approximation.

- Consider X, a signed integer between -2^31 and 2^31-1.

- Suppose a function is called which performs the assignment x=1/x

- The parameters passed to the function imply that x must be equal to
-5, -3, 8 or [10..20]. It is clear from inspection that there is no problem
here, but in this case PolySpace verification has made an imprecise
approximation.

How to Determine the Cause of an Orange?
Consider each of the four categories in turn. Bugs may be revealed by any
category of orange check other than the “Basic imprecision” category.

9-67

9 PolySpace™ Methodological Guide

• Potential bug — An orange check can reveal code which will fail under
some circumstances. The following section describes how to find them.

• Inconclusive analysis — Most inconclusive orange checks will take
some time to investigate. An inconclusive orange check may well result
from a very complex situation such that it may take an hour or more to
understand the cause. You may decide to recode in order to be certain that
there is no risk, bearing in mind the criticality of the function and the
required speed of execution.

• Data set issue — It is normally possible to conclude that an orange check
is the result of data set problem in a couple of minutes. You may wish to
comment the code to flag this warning, or alternatively modify the code in
order to take constraints into account.

• Basic imprecision — PolySpace verification cannot help to debug this
code. You may or may not have a problem here, but you will need a
supplementary activity to be sure. Most of the time, a quick code review is
a suitable path to take, perhaps using the Viewers navigation facilities.

Duration of Analysis

• “How Far has the Analysis Gone? How Can I Predict the Analysis
Duration?” on page 9-68

• “Reducing Analysis Time” on page 9-70

How Far has the Analysis Gone? How Can I Predict the
Analysis Duration?
The duration of an analysis is impacted by:

• The size of the code

• The number of global variables

• The nesting depth of the variables (the more nested they are, the longer
it takes)

• The depth of the call tree of the application

• The “intrinsic complexity” of the code, particularly with regards to pointer
manipulation

9-68

How to Get the Best Results

The fact that so many factors are involved make it impossible to derive a
precise formula to calculate analysis duration. Instead, PolySpace software
provides textual output to illustrate how much progress has been made
(available under Linux® and Windows®). This progress text is located in the
“product_installation_dir”/tools/ and is called polyspace-stats.

Example

/cygdrive/C/PolySpace/2.4/Verifier/tools/polyspace-stats
my_log_file.txt

Consider the area displaying:

Currently in Level 1 Software Safety Analysis

9-69

9 PolySpace™ Methodological Guide

4 .atz files out of a total of 4 were analysed for this pass: 00:00:46

It can be deduced that

• The proportion of files analyzed for this integration level (4/4)

• The elapsed time : 46 seconds

The remaining analysis duration can be deduced by extrapolating from this
data by considering the number of files and passes still to be completed.

Reducing Analysis Time

• “An Ideal Application Size” on page 9-70

• “Why Should there be an Optimum Size?” on page 9-71

• “Switch the Anti-virus Off” on page 9-72

• “Tuning PolySpace™ Parameters” on page 9-72

• “By Selecting a Subset of Code” on page 9-73

• “A Decision Algorithm to Speed-Up an Analysis: Hints and Troubleshooting”
on page 9-78

• “What are the Benefits of these Methods?” on page 9-84

An Ideal Application Size. There always is a compromise between the
time and resources required to analyze an application, and the resulting
selectivity. The larger the project size, the broader the approximations made
by PolySpace software. These approximations enable PolySpace software
to extend the range of project sizes it can manage, to perform the analysis
further and to solve traditionally incomputable problems. However, they also
mean that the benefits derived from analyzing the whole of a large application
have to be balanced against the loss of precision which results.

This is why it is recommended to begin with file by file analyses
(when dealing with C language), package by package analyses (when
dealing with Ada language) and class by class analyses (when dealing
with C++ language). The maximum application size is between twenty (for
C++) and fifty thousand lines of code (for C and Ada). For such applications,

9-70

How to Get the Best Results

approximations should not be too significant. Take care that some times
analysis time should not be reasonable.

Experience suggests that subdividing an application prior to analysis will
normally have a beneficial impact on selectivity — that is, more red,
green and grey checks, fewer orange unproven and therefore more efficient
bug detection.

A compromise between selectivity and size

Why Should there be an Optimum Size?. PolySpace software has
been used to analyze numerous applications with greater than one hundred
thousand lines of code. However, as project sizes become very large PolySpace
Verifier

• Makes broader approximations, producing more oranges

• Can take much more time to analyze the application.

PolySpace verification is most effective when it is used as early as possible
in the development process, i.e. BEFOREany other form of testing.

9-71

9 PolySpace™ Methodological Guide

When a small module (file, piece of code, package, whatever) is analyzed using
PolySpace software, the focus should be on the red and grey checks. Orange
unproven checks at this stage are of a very useful interest, as most of them
deal with robustness of the application. They will change to red, grey or green
as the project progresses and more and more modules are integrated.

During the integration process, there might be a point where the code becomes
so large (maybe 50000 lines of code or more) that the analysis of the whole
project is not achievable within a reasonable amount of time. Then there
are two options.

• Stop the use of PolySpace verification at this stage (a lot of the benefits
have been achieved already), or

• Analyze subsets of the code.

Switch the Anti-virus Off. Disabling or switching off any third party
anti-virus software for the duration of an analysis can reduce the analysis
time by up to forty percent.

Tuning PolySpace Parameters. here is a compromise to be made to balance
the time required to perform an analysis, and the time required to review
the results. Launching PolySpace verification with the following options
will allow the time taken for analysis to be reduced but will compromise
the precision of the results which will therefore take longer to review. It is
suggested that the parameters should be used in the sequence shown - that
is, if the first suggestion does not increase the speed of analysis sufficiently
then introduce the second, and so on.

• Switch from -O2 to a lower precision;

• Set the -respect-types-in-globals and -respect-types-in-fields options;

• Set the -k-limiting option to 2, then 1, or 0;

• Manually stub missing functions which write into their arguments.

• If some big arrays are used, set the -no-fold option.

For example, appropriate launching commands might be

polyspace-c -O0 -respect-types-in-globals -k-limiting 0

9-72

How to Get the Best Results

or

polyspace-c -quick

By Selecting a Subset of Code. If a project is subdivided for analysis
purposes, then the total analysis time will be considerably shorter for the
sum of the parts than for the whole project considered in one pass. (See
also: “Understanding Addressing” on page 8-35 , “Checking properties on
global variables at any point: Global assert” on page 3-64, and “Stubbing”
on page 3-48). A logical way to set about splitting the project in this way is
to consider data flow.

In such an application, there are two distinct concepts to consider:

• function entry-points — Function entry-points refer to the PolySpace
execution model since they are started concurrently, without any
assumption regarding sequence or priority. They represent the beginning
of your call tree;

• data entry-points — Regard lines in the code where data is acquired as
"data entry points".

Consider the examples below.

Example 1

int complete_treatment_based_on_x(int input)
{
thousand of line of computation...

}

Example 2

void main(void)
{
int x;
x = read_sensor();
y = complete_treatment_based_on_x(x);

}

9-73

9 PolySpace™ Methodological Guide

Example 3

#define REGISTER_1 (*(int *)0x2002002)
void main(void)
{
x = REGISTER_1;
y = complete_treatment_based_on_x(x);

}

In each case, the "x" variable is a data entry point and “y” is the consequence
of such an entry point. "y" may be formatted data, due to a very complex
manipulation of x.

Since x is volatile, a probable consequence will be that y will contain all
possible formatted data. An approximation could be to remove the procedure
complete_treatment_based_on_x completely, and let automatic stubbing work.
"y" will then be considered as potentially taking any value in the full range
data (see “Stubbing” on page 3-48).

//removed definition of complete_treatment_based_on_x
void main(void)
{
x = ... // what ever
y = complete_treatment_based_on_x(x); // now stubbed!

}

Some Consequences

• (-) Some loss of precision on y. Verifier will now consider all possible values
for y, including those specified for the first analysis;

• (+) A huge investigation of the code is not necessary to isolate a meaningful
subset. Any application can be split logically in this way;

• (+) No functional modules are lost;

• (+) The results will still be correct because there is no need to remove any
thread affecting change shared data;

• (+) The complexity of the code is considerably reduced;

• (+) A high precision level (O2, say) can be maintained.

9-74

How to Get the Best Results

Typical Examples of Removable Components, According to the Logic
of the Data

• Error management modules. These modules often contain a big
array of structures that are accessed through an API, but return only a
Boolean value. By removing the API code and retaining the prototype,
the automatically generated stub will be assumed to return a value in
the range [-2^31, 2^31-1], which includes 1 and 0. The procedure will be
considered to return all possible answers, just like reality;

• Buffer management for mailboxes coming from missing code.
Suppose an application reads a huge buffer of 1024 char, and then uses it
to populate 3 small arrays of data, using a very complicated algorithm
before passing it to the main module. If the buffer is excluded from the
analysis and the arrays are initialized with random values instead, then
the analysis of the remaining code will just be the same.

Subdivision According to Data-Flow

Consider the following example.

In this application, variables 1, 2 and 3 can vary between the following ranges:

9-75

9 PolySpace™ Methodological Guide

Var1 Between 0 and 10

Var2 Between 1 and 100

Var3 Between –10 and 10

Specification of Module A:

Module A consists of an algorithm which interpolates between var1 and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to 0,
the result in var4 is also equal to 0.

As a result, var4, var5 and var6 are produced with the following specifications:

Ranges var4
var5
var6

Between —60 and 110
Between 0 and 12
Between 0 and 100

Properties And a set of
properties between
variables

• If var2 is equal to 0, than
var4>var5>5.

• If var3 is greater than 4, than
var4<var5<12

• ...

Subdivision in accordance with data flow allows modules A and B to be
analyzed separately.

• A will use variables 1, 2 and 3 initialized respectively to [0;10], [1;100]
and [-10;10]

• B will use variables 4, 5 and 6 initialized respectively to [-60;110], [0;12]
and [-10;10]

The consequences:

• (-) A slight loss of precision on the B module analysis, because now all
combinations for variables 4, 5 and 6 are considered:

- It includes all of the possible combinations.

9-76

How to Get the Best Results

- It also includes those that would have been restricted by the A module
analysis.

For example, If the B module included the test

“If var2 is equal to 0, than var4>var5>5”

then the dead code on any subsequent “else” clause would not be detected.

• (+) An in depth investigation of the code is not necessary to isolate
a meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data

• (+) The results remain valid (because there no need to remove (say) a
thread that will change shared data)

• (+) The complexity of the code is reduced by a significant factor

• (+) The maximum precision level can be retained.

Typical examples of removable components:

• Error management modules. A function
has_an_error_already_occurredmight return TRUE or FALSE. Such a
module may contain a big array of structures which are accessed through
an API. The removal of the API code with the retention of the prototype
will result in the Verifier analysis producing a stub which returns [-2^31,
2^31-1]. This clearly includes 1 and 0 (yes and no). The procedure
has_an_error_already_occurred will therefore return all possible answers,
just like the code would at execution time.

• Buffer management for mailboxes coming from missing code. Suppose a
large buffer of 1024 char is read, and the data is then collated into 3 small
arrays of data using a very complicated algorithm. This data is then given
to a main module for treatment. For the Verifier analysis, the buffer can be
removed and the 3 arrays initialized with random values.

• Display modules.

Subdivide According to Real-Time Characteristics

Another way of splitting an application is to isolate files which contain only a
subset of tasks, and to analyze each subset separately.

9-77

9 PolySpace™ Methodological Guide

If an analysis is initiated using only a few tasks, PolySpace Verifier will lose
information regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and T2 is scheduled to read it at a particular moment,
subsequent operations in T2 will be impacted by the values of x.

As an example, consider that T1 can write either 10 or 12 into x and that
T2 can both write 15 into x and read the value of x. There are two ways to
achieve a sound stand-alone analysis of T2.

• x could be declared as volatile in order to take into account all possible
executions. Otherwise x will take only its initial value or x variable will
remain constant, and T2s analysis will be a subset of possible execution
paths. You might have precise results, but it will only include one
scenarioamong all possible states for the variable x.

• x could be initialized to the whole possible range [10;15], and then the
T2entry-point called. This is accurate if x is calibration data.

Subdivide According to Files

Simply extract a subset of files and perform an analysis either:

• using entry-points, or

• by creating a “main” that calls randomly all functions that are not called by
any other within this subset of code.

This method may look too simple to be efficient but it can produce good results
when the aim is to find red errors and bugs in grey code.

A Decision Algorithm to Speed-Up an Analysis: Hints and
Troubleshooting. This chapter suggests methods to reduce the duration of
a particular analysis, while minimizing the need to compromise the launch
parameters or the precision of the results.

9-78

How to Get the Best Results

The size of a code sample which can be effectively analyzed can be increased by
tuning the tool be optimized for that sample. Beyond that point, subdividing
the code or choosing a lower precision level will bring better results (-O1, -O0).

Suppose that for a given set of code, the intermediate language translation
does not finish.

Step 1: standard scaling options

9-79

9 PolySpace™ Methodological Guide

Step 2: alias complexity

9-80

How to Get the Best Results

A typical set of statistics is shown below. They are be found for any application
by using the “polyspace-stats -v” command, at any point after the intermediate
language translation has been completed.

Some stats on aliases use:

9-81

9 PolySpace™ Methodological Guide

Number of alias writes: 2672
Number of must-alias writes: 0
Number of alias reads: 0
Number of invisibles: 60
Number of global invisibles: 3808

Stats about alias writes:
biggest sets of alias writes: Variable_1 (45), Variable_1 (32)
procedures that write the biggest sets of aliases: procedure_f_1

(583), procedure_f_2 (369), procedure_f_3 (264)

You can reduce the pointers complexity by inlining the
following functions :
procedure_g_1 procedure_g_2
procedure_g_3

From this point, there are three possible routes to take. In order of preference,
they are

• Reduce procedure complexity

• Reduce task complexity

• Reduce variable complexity

and then restart the analysis.

Reduce procedure complexity

9-82

How to Get the Best Results

For example, does it pass its pointer parameters to another procedure?

9-83

9 PolySpace™ Methodological Guide

YES NO NO

void f(int *p)
{
f2(p)

}

void f(int q) void f(int *r)
{
*r = 12

}

Reduce task complexity

If 2 or more tasks are present, and particularly if there are more than 10000
alias reads:

Set the -lightweight-thread-model option, which will

• Reduce task complexity, and

• Reduce analysis time

There are some downsides:

• It causes more oranges and a slight loss of precision on reads of shared
variables through pointers

• The dictionary may omit some read/write accesses.

Reduce variable complexity

If the types are complex Set the -k-limiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision

If there are large arrays Setting the -no-fold option can solve the problem.

What are the Benefits of these Methods?. It may be desirable to split
the code

• To reduce the analysis time for a particular precision mode

• To reduce the number of oranges (see next two sections for details)

9-84

How to Get the Best Results

The problems subdivision may bring are that

• Orange checks can result from a lack of information regarding the
relationship between modules, tasks or variables

• Orange checks can result from using too wide a range of values for stubbed
functions

When the Application is Incomplete

When the code consists of a small subset of a larger project, a lot of procedures
will be automatically stubbed. This is done according to the specification
or prototype of the missing functions, and therefore PolySpace verification
assumes that all possible values for the parameter type can be returned.

Consider two 32 bit integers “a” and “b”, which are initialized with their full
range due to missing functions. Here, a*b would cause an overflow, because
“a” and “b” can be equal to 2^31. The number of incidences of these “data set
issue” orange check can be reduced by precise stubbing.

Now consider a procedure f which modifies its input parameters “a” and “b”,
both of which are passed by reference. Suppose that “a” might be modified
to any value between 0 and 10, and “b” to any value between -10 and 10.
In an automatically stubbed function, the combination a=10 and b=10 is
possible even though it might not be possible with the real function. This
can introduce orange checks in a code snippet such as 1/(a*b - 100), where
the division would be orange.

• So, even where precise stubbing is used, analyzing a small piece of
application might introduce extra orange checks. However, the net effect
from reducing the complexity will be to reduce the total number of orange
checks.

• When using the default stubbing, the increase in the number of orange
checks as the result of this phenomenon tends to be more pronounced.

9-85

9 PolySpace™ Methodological Guide

Considering the Effects of Application Code Size

PolySpace Verifier can make approximations when computing the possible
values of the variables, at any point in the program. Such an approximation
will always use a superset of the actual possible values.

For instance, in a relatively small application, PolySpace Verifier might retain
very detailed information about the data at a particular point in the code, so
that for example the variable VAR can take the values { -2 ; 1 ; 2 ; 10 ; 15 ;
16 ; 17 ; 25 }. If VAR is used to divide, the division is green (because 0 is
not a possible value).

If the program being analyzed is large, PolySpace Verifier would simplify the
internal data representation by using a less precise approximation, such
as [-2 ; 2] U {10} U [15 ; 17] U {25} . Here, the same division appears as an
orange check.

If the complexity of the internal data becomes even greater later in the
analysis, PolySpace Verifier might further simplify the VAR range to (say)
[-2 ; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (O0, O2), PolySpace Verifier will
adjust the level of simplification, for example:

• -O0 and -quick — shorter computation time,

• -O2 — less orange warnings.

• -O3 — less orange warnings and bigger computation time.

9-86

Applying Coding Rules to Reduce Oranges

Applying Coding Rules to Reduce Oranges

In this section...

“MISRA® Rules Which PolySpace™ Verification Can Help to Follow” on
page 9-87

“Recommended Set of Coding Rules” on page 9-87

“Approximations Made by PolySpace™ Verification” on page 9-92

MISRA® Rules Which PolySpace™ Verification Can
Help to Follow

Rule
#

Adv/ReqDescription

21.1 required Provision should be made for appropriate run-time
checking.

9.1 required All automatic variables shall have been assigned a value
before being used.

12.8 required The right hand operand of a shift operator shall lie
between zero and one less than the width in bits of the
left hand operand.

12.11 advisory Evaluation of constant unsigned integer expressions
should not lead to wrap-around.

16.6 required The number of arguments passed to a function shall
match the number of parameters.

11.3 advisory A cast should not be performed between a pointer type
and an integral type (the null pointer shall not be
de-referenced).

Recommended Set of Coding Rules
It is recommended that a subset of MISRA rules should be applied.

9-87

9 PolySpace™ Methodological Guide

In addition, some constructions are known to produce a disproportionate
number of orange checks. It will help to improve selectivity if these
constructions are avoided at the design stage.

• “Set of Coding Rules with a Direct Impact on Selectivity” on page 9-88

• “Set of Coding Rules with an Indirect Impact on Selectivity” on page 9-89

Set of Coding Rules with a Direct Impact on Selectivity
Following this set of coding rules will typically improve selectivity.

Rule # Description

MISRA® 8. declarations of objects should be at function scope unless a
wider scope is necessary

MISRA 8.11 all declaration at file scope should be static where possible

MISRA 8.12 When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization.

MISRA 10.4 mixed precision arithmetic should use explicit casting to
generate the desired results

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.2 Implicit conversions which may result in a loss of
information shall not be used

MISRA 11.5 Type casting from any type to or from pointers shall not
be used.

MISRA 12.12 The underlying bit representations of floating-point values
shall not be used.

MISRA 13.3 Floating-point expressions shall not be tested for equality
or inequality.

MISRA 13.4 Floating point variables shall not be used as loop counters.

9-88

Applying Coding Rules to Reduce Oranges

Rule # Description

MISRA 13.5 Only expressions concerned with loop control should appear
within a for statement

MISRA 16.1 Functions with variable numbers of arguments shall not
be used.

MISRA 16.2 Functions shall not call themselves, either directly or
indirectly.

MISRA 16.7 const qualification should be used on function parameters
which are passed by reference, where it is intended that the
function will not modify the parameter

MISRA 17.5 The declaration of objects should contain no more than 2
levels of pointer indirection.

MISRA 17.3 Relational operators shall not be applied to pointer types
except where both operands are of the same type and point
to the same array, structure or union.

MISRA 17.6 The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 overlapping variable storage shall not be used

MISRA 18.4 Unions shall not be used to access the sub-parts of larger
data types

MISRA 20.4 Dynamic heap memory allocation shall not be used.

Note MISRA rules 16.7, 17.3and 18.3 are coding rules not checked.

Set of Coding Rules with an Indirect Impact on Selectivity
Following good practice in designing and writing “clean” software tends to
imply less complexity, and hence yields high selectivity from PolySpace™
analyses. The following rules are especially significant in this regard.

9-89

9 PolySpace™ Methodological Guide

Rule # Description

MISRA 5.1 Identifiers (internal and external) shall not rely on
significance of more than 31 characters. Furthermore the
compiler/linker shall be checked to ensure that 31 character
significance and case sensitivity are supported for external
identifiers.

MISRA 6.3 the basic types of char, int, short, long, float, and double
should not be used, but specific-length equivalent should
be “typedef” for the specific compiler, and these type names
used in the code

MISRA 9.2 Braces shall be used to indicate and match the structure in
the non-zero initialization of arrays and structures.

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized.

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression.

MISRA 11.1 Conversions shall not be performed between a pointer to
a function and any type other than the integral type (All
the functions pointed to by a pointer to function shall be
identical in the number and type of parameters and the
return type).

MISRA 12.1 no dependence should be placed on Cs operator precedence
rules in expressions.

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits.

MISRA 12.4 The right hand operand of a logical && or || operator shall
not contain side effects.

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions.

MISRA 12.6 Logical operators should not be confused with bitwise
operators.

9-90

Applying Coding Rules to Reduce Oranges

Rule # Description

MISRA 12.9 The unary minus operator shall not be applied to an
unsigned expression.

MISRA 12.10 The comma operator shall not be used.

MISRA 13.1 Assignment operators shall not be used in expressions
which return Boolean values.

MISRA 13.2 Tests of a value against zero should be made explicit, unless
the operand is effectively Boolean

MISRA 14.8 The statement forming the body of a if, else if, else, while,
do ... while or for statements shall always be enclosed in
braces

MISRA 14.10 All if else if constructs should contain a final else clause.

MISRA 15.3 All switch statements shall contain a final default clause

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop.

MISRA 16.3 Identifiers shall either be given for all of the parameters in
a function prototype declaration, or for none.

MISRA 16.8 For functions with non-void return type:

i) there shall be one return statement for every exit branch
(including the end of the program),

ii) each return shall have an expression

iii) The return expression shall match the declared return
type.

MISRA 16.9 Functions called with no parameters should have empty
parentheses

MISRA 19.4 C macros shall only be used for symbolic constants,
function-like macros, type qualifiers and storage class
specifiers.

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like pre-processing directives.

9-91

9 PolySpace™ Methodological Guide

Rule # Description

MISRA 19.10 In the definition of a function-like macro the whole
definition, and each instance of a parameter, shall be
enclosed in parentheses.

MISRA 19.11 Identifiers in pre-processor directives shall be defined
before use.

MISRA 19.12 There shall be at most one occurrence of the # or ##
pre-processor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

Note MISRA rule 20.3 is a coding rule not checked.

Approximations Made by PolySpace™ Verification

• “Volatile Variables” on page 9-93

• “Structures with Volatile Fields” on page 9-93

• “Absolute Addresses” on page 9-93

• “Pointer Comparison” on page 9-93

• “Left Shift on Negative Variables” on page 9-94

• “Some Bitwise Operators” on page 9-94

• “Float Loops” on page 9-95

• “Shared Variables” on page 9-96

• “Array of Function Pointers” on page 9-96

• “Trigonometric Functions” on page 9-97

• “Unions” on page 9-97

• “Loop Exit Conditions” on page 9-98

• “Constant Pointer” on page 9-99

9-92

Applying Coding Rules to Reduce Oranges

Volatile Variables
Volatile variables are potentially uninitialized and their content is always
full range.

2 int volatile_test (void)
3 {
4 volatile int tmp;
5 return(tmp); // NIV orange: the variable content is full range
[-2^31;2^31-1]
6 }

In the case of a global variable the content would also be full range, but the
NIV check would be green.

Structures with Volatile Fields
In this example, although only the b field is declared as volatile, in practice
any read access to the “a” field will be full range and orange.

2 typedef struct {
3 int a;
4 volatile int b;
5 } Vol_Struct;

Absolute Addresses
Both reading from, and writing to, an absolute address leads to warning
checks on the pointer dereference. An absolute address is considered as a
volatile variable.

Val = *((char *) 0x0F00); // NIV and IDP orange: access to an
absolute address

Pointer Comparison
PolySpace verification is a static tool analyzing source code. Memory
management concerns dynamic considerations, and the characteristics of
particular compilers and targets. PolySpace verification therefore doesn’t
consider where objects are actually implanted in memory

5 int *i, *j, k;

9-93

9 PolySpace™ Methodological Guide

6 i = (int *) 0x0F00;
7 j = (int *) 0x0FF0;
8
9 if (i < j) // the condition can be true or false
10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

Its the same situation if “i” and “j” points to real variable

6 i = & one_variable;
7 j = & another_one;
9 if (i < j) // the condition can still be true or false

Left Shift on Negative Variables
Consider the example below.

• When the option -allow-negative-operand-in- shift is not used,PolySpace
verification gives a red error on the SHF check because behavior is
compiler-dependant.

• When the option -allow-negative-operand-in- shift isused, y is always
full range even if the signed value of x is known.

4 char x, y;
5 x = 0x8F;
6 y = x << 3 ; // OVFL and UNFL Warnings

Some Bitwise Operators
PolySpace results are not equally precise with all bitwise operators - AND,
OR, XOR, and NOT (resp. &, |, ^,))

1 int random_uint(void);
2
3 void test (void)
4 { unsigned int var1, var2, var3;
5 var1=0; var2=0;
6
7 // precision with zero on values with AND bitwise operator
8 var3= 0x01 & var2;

9-94

Applying Coding Rules to Reduce Oranges

9 if (random_uint()) assert(var3==0); // ASRT Checked
10 var3= 0x02 & 0xF3;
11 if (random_uint()) assert(var3==0x02); // ASRT checked
12 // Full range with other values
13 var3 = random_uint();
14 var3 = var3 & 0x02;
15 if (random_uint()) assert(var3==0x02 || var3==0); // ASRT
Warning
16
17 // Full range on values with OR bitwise operator
18 var3=var1|var2;
19 if (random_uint()) assert(var3==0); // ASRT Warning
20 if (random_uint()) assert(var3!=0); // ASRT Warning
21
22 // Full range on values with XOR bitwise operator
23 var3=var1^var2;
24 if (random_uint()) assert(var3==0); // ASRT Warning
25 if (random_uint()) assert(var3!=0); // ASRT Warning
26
27 // precision with zero values on NEGATIVE bitwise operator
28 var3 = ~var1;
29 if (random_uint()) assert(var3==0xFFFFFFFF); // ASRT checked
30 // precision on values with NEGATIVE bitwise operator
31 var3 = ~0xAE;
32 if (random_uint()) assert(var3==0xFFFFFF51); // ASRT
checked
33 }

Float Loops
Values on constructions are less precise when floats are used in loops.

5 int i;
6 double X = 0.0;
7
8 // less precision on float evaluation in loops
9 for (i = 0 ; i < 6; i++)
10 X = X + 10.56; // OVFL warning
11 // VOA says 10.561 >= EXPR >= 10.559 OR EXP >= 21.119

9-95

9 PolySpace™ Methodological Guide

Shared Variables
At the minimum, a shared variable contains a union of all ranges it can
contain among the application. At the maximum, the variable will be full
range.

12 void p_task1(void)
13 {
14 begin_cs();
15 X = 0;
16 if (X) {
17 Y = X; // Verified NIV, even it should be grey
18 assert (Y == 12); // Warning assert, even it should be grey
19 }
20 end_cs();
21 }
22
23 void p_task2(void)
24 {
25 begin_cs();
26 X = 12;
27 Y = X + 1; // Verifier considers [X==1] or [X==13]
28 if (Y == 13)
29 Y = 14;
30 else
31 Y = X - 1 ; // Verified checks even it should be grey
32 end_cs();
33 }

Array of Function Pointers
In the following example, PolySpace results show an orange check despite the
test for a NULL function pointer test. However, it does accurately track the
functions being called.

18 ptr_func array_func[] = {
19 f1,
20 f2,
21 NULL,
22 };
23

9-96

Applying Coding Rules to Reduce Oranges

24 void main(void)
25 {
26 int i;
27
28 i = 0;
29 while (i < 3) {
30 if (array_func[i] != NULL)
31 array_func[i](); // function must point to a valid
function
32 i++; }

Trigonometric Functions
With all trigonometric functions such as cosines, sines etc., PolySpace
verification always assumes that the return value is bound between the limits
of that function - irrespective of the parameter passed to it. Consider the
following example, which uses acos, sin and asin functions.

7 double res;
8
9 res = sin(3.141592654);
10 assert(res == 0.0); // VOA says [-1..1]
11
12 res = asin(0.0);
13 assert(res == 0.0); // VOA Always in [-pi/2..pi/2]
14
15 res = acos(0.0);
16 assert(res == 0.0); // VOA always in [0..pi]

Unions
It is recognized nonetheless that there are situations in which the careful
use of unions is desirable in constructing an efficient implementation.
Nevertheless, the kinds of implementation behavior that might relevant are:

• Padding: padding could be inserted at the end of an union.

• Alignment: members of any structures within union could have different
alignments.

• Endianness: whether the most significant byte of a word could be stored at
the lowest or highest memory address.

9-97

9 PolySpace™ Methodological Guide

• Bit-order: bits within bytes could have both different numbering and
allocation to bit fields.

This why PolySpace verification can lose precision when structure unions
are considered. Indeed this kind of implementation is compiler dependant.
Conversions from one type a union to another will cause a loss of precision on
two checks:

• Is the other field initialized? Orange NIV

• What is the content of the other field? Full range

typedef union _u {
int a;
char b[4]; } my_union;
my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;
if (X.A == 0x1111)
else // both branches are reachable

Loop Exit Conditions
PolySpace verification is more precise in loops where a test other than “does
not equal” is used. Consider the loop index exit values in the following
examples.

The orange check in this example

4 x = 0;
5 While (x != value)
6 {
7 ;
8 x++;
9 }

is not evident here:

5 While (x <= value)

8 x++;

9-98

Applying Coding Rules to Reduce Oranges

Constant Pointer
To increase PolySpace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

9-99

9 PolySpace™ Methodological Guide

9-100

10

Options Description

General (p. 10-2) Describes general options

Target/Compiler (p. 10-10) Describes compiler options

Compliance with Standards
(p. 10-22)

Describes compliance options

PolySpace™ Inner Settings (p. 10-32) Describes options for PolySpace™
software settings

Precision/Scaling (p. 10-47) Describes precision options

MultiTasking (PolySpace™ Server™
for C/C++ Product Only) (p. 10-59)

Describes multitasking options

Batch Options (p. 10-62) Describes batch options

Complete Examples (p. 10-64) Provides several examples of using
PolySpace™ Client™ for C/C++
Verification

10 Options Description

General

In this section...

“Overview” on page 10-2

“-prog Session identifier” on page 10-2

“ -date Date” on page 10-3

“-author Author” on page 10-3

“-verif-version Version” on page 10-3

“-voa” on page 10-4

“-keep-all-files” on page 10-4

“-continue-with-red-error” on page 10-5

“-continue-with-existing-host” on page 10-5

“ -allow-unsupported-linux” on page 10-5

“-results-dir Results Directory” on page 10-6

“-sources "files" or -sources-list-file file_name” on page 10-7

“ -I directory ” on page 10-8

Overview
This section collates all options relating to the identification of the analysis,
including the destination directory for the results and sources.

-prog Session identifier
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.

Default:

Shell Script: polyspace

GUI: New_Project

10-2

General

Example shell script entry:

polyspace-c -prog myApp ...

-date Date
This option specifies a date stamp for the analysis in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Default:

Day of launching the analysis

Example shell script entry:

polyspace-c -date "02/01/2002"...

-author Author
This option is used to specify the name of the author of the verification.

Default:

the name of the author is the result of the whoami command

Example shell script entry:

polyspace-c -author "John Tester"

-verif-version Version
Specifies the version identifier of the verification. This option can be used to
identify different analyses. This information is identified in the GUI as the
Version.

Default:

1.0.

10-3

10 Options Description

Example shell script entry:

polyspace-c -verif-version 1.3 ...

-voa
When applied at launch time, this option enables the inspection of calculated
domains for simple type assignments (scalar or float).

A new category of checks — named VOA — is generated on "="of some scalar
assignments to give the ranges. VOA checks are not available for volatile
variables.

Default:

Disabled by default

Note Depending on code optimization, this check may not be present at all
assignment locations

Example Shell Script Entry:

polyspace-c -voa ...

-keep-all-files
When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart Verifier from the end of
any complete pass (provided the source code remains entirely unchanged). If
this option is not used, it is only possible to restart Verifier from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the Verifier.

10-4

General

-continue-with-red-error

Note This option may yield invalid results when used improperly.

Ordinarily, red errors (other than NTC) prevent PolySpace™ verification
from continuing to the next integration pass. This option allows PolySpace
verification to continue even if one of these red errors is encountered. In
most cases, this will mean that the dynamic behavior of the code beyond the
point where red errors are identified will be undefined, unless the red code is
actually inaccessible.

Default:

Verifier stops upon finding red errors.

Example shell script entry :

polyspace-c -continue-with-red-error ...

-continue-with-existing-host
When this option is set, the analysis will continue even if the system is under
specified or its configuration is not as preferred by PolySpace software.
Verified system parameters include the amount of RAM, the amount of swap
space, and the ratio of RAM to swap.

Default:

Verifier stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:

polyspace-c -continue-with-existing-host ...

-allow-unsupported-linux
This option specifies that PolySpace verification will be launched on an
unsupported OS Linux® distribution.

10-5

10 Options Description

In such case a warning is displayed in the log file against possible incorrect
behaviors:

** ***
*** ***
*** WARNING ***
*** ***
*** You are running PolySpace Verifier on an ***
*** unsupported Linux distribution. It may lead ***
*** to incorrect behaviour of the product. Please ***
*** note that no support will be available for ***
*** this operating system. ***
*** ***
** ** ***

Default:

Disabled

Example Shell Script Entry:

polyspace-c allow-unsupported-linux ...

-results-dir Results Directory
This option specifies the directory in which Verifier will write the results
of the analysis. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
is to be copied using the "Save as" option.

Default:
Shell Script: The directory in which tool is launched.
From Graphical User Interface: C:\PolySpace_Results

Example Shell Script Entry:

polyspace-c -results-dir RESULTS ...
export RESULTS=results_`date +%d%B_%HH%M_%A`
polyspace-c -results-dir `pwd`/$RESULTS ...

10-6

General

-sources "files" or -sources-list-file file_name
-sources "file1[file2[...]]" (Linux and Solaris™)

or

-sources "file1[,file2[, ...]]" (windows, Linux and Solaris)

or

-sources-list-file file_name (not a graphical option)

List of source files to be analyzed, double-quoted and separated by commas.

Note UNIX® standard wild cards are available to specify a number of files.

Note The specified files must have valid extensions:
*.(c|C|cc|cpp|CPP|cxx|CXX)

Defaults:

sources/*.(c|C|cc|cpp|CPP|cxx|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-c -sources "my_directory/*.cpp" ...
polyspace-c -sources "my_directory/file1.cc other_dir/file2.cpp"
...

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-c -sources "my_directory/file1.cpp,other_dir/file2.cc"
...

10-7

10 Options Description

Using -sources-list-file, each file name need to be given with an absolute
path. Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

Note This option is only available in batch mode

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"
polyspace-c -sources-list-file "/home/poly/files.txt"

-I directory
This option is used to specify the name of a directory to be included when
compiling C sources. Only one directory may be specified for each –I, but the
option can be used multiple times.

Default:

• When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

• If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-I" list

Example Shell Script Entry-1:

polyspace-c -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-c -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-c

10-8

General

is equivalent to

polyspace-c -I ./sources

10-9

10 Options Description

Target/Compiler

In this section...

“Overview” on page 10-10

“-target TargetProcessorType” on page 10-10

“GENERIC ADVANCED TARGET OPTIONS” on page 10-11

“-OS-target OperatingSystemTargetForPolySpaceStubs” on page 10-17

“-D compiler-flag” on page 10-17

“-U compiler-flag ” on page 10-18

“-include file_name” on page 10-18

“-post-preprocessing-command <file_name> or "command"” on page 10-19

“-post-analysis-command <file_name> or "command"” on page 10-20

Overview
This section allows details of the target processor and operating system to be
specified. Header files should not be entered here; instead, include directories
should be added using the relevant field under the Compile flag options.

-target TargetProcessorType
This option specifies the target processor type, and by doing so informs
Verifier of the size of fundamental data types and of the endianess of the
target machine.

Possible values are: sparc, m68k, powerpc, i386, c-167, tms320c3x,
sharc21x61, necv850, mcpu, or generic target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. One or more
generic target can also be specified and saved. Also code which is to be run on
an unlisted processor type can be analyzed using one of the other processor
types listed, if the data properties which are relevant to Verifier are common.
Refer to the “target specific issues" section for more details.

10-10

Target/Compiler

Instructions on the specification of a generic target and on the modification
of the mcpu target are available in “GENERIC ADVANCED TARGET
OPTIONS” on page 10-11.

Default:

sparc

Example shell script entry:

polyspace-c -target m68k ...

GENERIC ADVANCED TARGET OPTIONS
The previous Generic target options dialog box is only available when a mcpu
target is selected. (Enter the target name in PolySpace™ Launcher)

Allows the specification of a generic "Micro Controller/Processor Unit" or
mcpu target name. Initially, it is necessary to use the GUI to specify the name
of a new mcputarget – say, “MyTarget”.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

• char [8, 8, char [16,16]]

• short [8,8], short [16, 16]

• int [16, 16]

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

• char is signed

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-c -target MyTarget

10-11

10 Options Description

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

polyspace-c -target mcpu -align 8

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

• default mode – The sign of char is left to assume the target’s default
behavior. By default all targets are considered as signed except for hc08
and powerpc targets.

• signed – Disregards the target’s default char definition, and specifies that
a "signed char" should be used.

• unsigned – Disregards the target’s default char definition, and specifies
that a "unsigned char" should be used.

Example Shell Script Entry

polyspace-c -default-sign-of-char unsigned -target mcpu ...

-char-is-16bits
This option is only available when a -mcpu generic target has been chosen.

The default configuration of a generic target defines a char as 16 bits. This
option changes it to 16 bits, irrespective of sign.

the minimum alignment of objects is also set to 16 bits and so, incompatible
with the options -short-is-8bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

• computation of size of for objects

• detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

10-12

Target/Compiler

Example shell script entry:

polyspace-c -target mcpu -char-is-16bits

-short-is-8bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

polyspace-c -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a mcpu generic target, hc08, hc12 and mpc5xx
target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-c -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a mcpu generic target has been chosen.

10-13

10 Options Description

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.

Example shell script entry

polyspace-c -target mcpu -long-long-is-64bits

-double-is-64bits
This option is available when either a mcpu generic target or a sharc21x61
target has been chosen.

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

- Computation of sizeofobjects referencing double type

- Detection of floating point underflow/overflow

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);
s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

10-14

Target/Compiler

}

Using the default configuration of sharc21x62, C Verifier assumes that a
value of 1 is assigned to s1, 2 is assigned to s2, and there is a consequential
float overflow in the multiplication x * 2. Using the –double-is-64bits option,
a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)

Example shell script entry

polyspace-c -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-c -target mcpu -pointer-is-32bits

-align [8|16|32]
This option is available with a mcpu generic target and some other specific
targets (with hc08, hc12 or mpc5xx available values are 16 and 32). It is used
to set the largest alignment of all data objects to 4/2/1 byte(s), meaning a
32, 16 or 8 bit boundary respectively.

The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-c -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of more
than 2 bytes are used as struct members or array components, they are
aligned at 2 bytes boundaries.

10-15

10 Options Description

Example shell script entry with a 16 bits specific alignment:

polyspace-c -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-c -target mcpu -align 8

-logical-signed-right-shift
In the Graphical User Interface, the user can choose between arithmetical
and logical computation.

• - Arithmetic: the sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
7 >> 1 = 3

• - Logical: 0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
7 >> 1 = 3

Example shell script entry

When using the command line, arithmetic is the default computation mode.
When this option is set, logical computation will be performed.

polyspace-c -logical-signed-right-shift

10-16

Target/Compiler

-OS-target
OperatingSystemTargetForPolySpaceStubs
This option specifies the operating system target for PolySpace stubs.

Possible values are ’Solaris’, ’Linux’, ’VxWorks’, ’Visual’ and ’no-predefined-OS’.

This information allows the appropriate system definitions to be used during
preprocessing in order to analyze the included files properly. -OS-target
no-predefined-OS may be used in conjunction with -include or/and -D to give
all of the system preprocessor flags to be used at execution time. Details
of these may be found by executing the compiler for the project in verbose
mode. They are also listed in this document - search for keyword "OS-target
option"

Default:

Solaris

Note Only the Linux® include files are provided with PolySpace software
(see the include folder in the installation directory). Projects developed for use
with other operating systems may be analyzed by using the corresponding
include files for that OS. For instance, in order to analyze a VxWorks® project
it is necessary to use the option -I <<path_to_the_VxWorks_include_folder>>

Example shell script entry:

polyspace-c -OS-target linux
polyspace-c -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

-D compiler-flag
This option is used to define macro compiler flags to be used during
compilation phase.

Only one flag can be used with each –D as for compilers, but the option can be
used several times as shown in the example below.

10-17

10 Options Description

Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -D HAVE_MYLIB -D USE_COM1 ...

-U compiler-flag
This option is used to undefine a macro compiler flags

As for compilers, only one flag can be used with each –U, but the option can be
used several times as shown in the example below.

Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -U HAVE_MYLIB -U USE_COM1 ...

-include file_name
This option is used to specify files to be included by each C file involved in
the analysis.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-c -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

polyspace-c -include /the_complete_path/my_defines.h ...

10-18

Target/Compiler

-post-preprocessing-command <file_name> or
"command"
When this option is used, the specified script file or command is run just
after the pre-processing phase on each source file. The script executes on
each preprocessed c files. The command should be designed to process the
standard output from pre-processing and produce its results in accordance
with that standard output.

Note We can have find each pre-processed file in the results directory in the
zipped file ci.zip located in <results/ALL/SRC/MACROS. The extension of
the preprocessed file is .ci.

It is important also keep the number of lines of the preprocessed file ci file.
Adding a line or removing one could have some unpredictable behavior on the
location of checks and MACROS in the PolySpace viewer.

Default:

No command.

Example Shell Script Entry – file name:

To remove the key word interrupt or @near, you can type the following
command

polyspace-c -post-preprocessing-command
`pwd`/remove_bad_keywords.sh

where remove_bad_keywords.sh is the following script:

#!/bin/sh
sed "s/@near//g" | sed "s/interrupt//g"

Example Shell Command Entry:

This example performs the same function as that illustrated above, but
specifies the command line directly:

10-19

10 Options Description

polyspace-c -post-preprocessing-command "sed s/@near//g"

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

PolySpaceInstallDir\Verifier\tools\perl

-post-analysis-command <file_name> or "command"
When this option is used, the specified script file or command is executed once
the analysis has completed.

The script or command is executed in the results directory of the analysis.

Execution occurs after the last part of the analysis. The last part of is
determined by the –to option.

Note Depending of the architecture used, notably when using remote
launcher, the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

This example shows how to send an email to tip the client side off that his
analysis has been ended. This example supposes that the mailx command is
available on the machine. So the command looks like:

polyspace-c -post-analysis-command `pwd`/end_email.sh

where end_emails.sh is the following script:

10-20

Target/Compiler

#!/bin/sh
echo analysis finished | mailx s PolySpace Analysis
ended name@domain.com

Example Shell Command Entry:

This example performs the same function as that illustrated above, but
specifies the command line directly:

polyspace-c -post-analysis-command "mailx s \ PolySpace Analysis
ended\ \ name@domain.com\ "

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

PolySpaceInstallDir\Verifier\tools\perl

10-21

mailto:name@domain.com
mailto:name@domain.com

10 Options Description

Compliance with Standards

In this section...

“-dos” on page 10-22

“Embedded Assembler” on page 10-23

“Strictness during analysis launching” on page 10-24

“Permissiveness during analysis launching” on page 10-25

“MISRA-C 2004 Rules” on page 10-28

“-dialect [iar|keil]” on page 10-30

-dos

This option must be used when the contents of the include or source
directory comes from a DOS or Windows® file system. It deals with
upper/lower case sensitivity and control characters issues.

Concerned files are:

• header files: all include dir specified (-I option)

• source files: all sources files selected for the analysis (-sources option)

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

into

#include "../my_test.h"

#include "../my_other_file.h"

Default:

disabled by default

10-22

Compliance with Standards

Example Shell Script Entry:

polyspace-c -I /usr/include -dos -I ./my_copied_include_dir -D test=1

Embedded Assembler

• “-discard-asm ” on page 10-23

• “Pragmas asm” on page 10-23

-discard-asm
This option instructs the PolySpace™ analysis to discard assembler code. If
this option is used, the assembler code should be modelled in c.

This option is not compatible with -asm-begin and -asm-end options.

Default:

Embedded assembler is treated as an error.

Example Shell Script Entry:

polyspace-c -discard-asm ...

Pragmas asm
-asm-begin "mark1[mark2[...]] "

and

-asm-end "mark1[mark2[...]]"

This option is used to allow compiler specific asm functions to be excluded
from the analysis, with the offending code block delimited by two #pragma
directives.

Consider the following example.

#pragma asm_begin_1

10-23

10 Options Description

int foo_1(void) { /* asm code to be ignored by PolySpace */ }
#pragma asm_end_1
#pragma asm_begin_2
void foo_2(void) { /* asm code to be ignored by PolySpace */ }
#pragma asm_end_2

Where "asm_begin_1" and "asm_begin_2" marks the beginning of asm
sections which will be discarded and “asm_end_1”, respectively "asm_end_2"
mark the end of those sections.

Also refer to the -discard-asm option with regards to the following code:

asm int foo_1(void) { /* asm code to be ignored by PolySpace */ }

asm void foo_2(void) { /* asmcode to be ignored by PolySpace */ }

Example Shell Script Entry:

polyspace-c -discard-asm -asm-begin "asm_begin_1,asm_begin_2"
-asm-end "asm_end_1,asm_end_2" …

Strictness during analysis launching

• “-strict” on page 10-24

• “-wall” on page 10-24

-strict
This option selects the Strict mode of PolySpace verification. It is equivalent
to using the -Wall and -no-automatic-stubbingoptions simultaneously.

This option is not compatible with -asm-begin and -asm-end options.

-wall
When this option is used, the C compliance phase will print all warnings.
For example, with this option, a warning will raise in the log file during

10-24

Compliance with Standards

compilation phase when trying to write into a const variable: “warning:
assignment of read-only member <var>”

Default:

By default, only warnings about compliance across different files
are printed.

Example Shell Script Entry:

polyspace-c -Wall ...

Permissiveness during analysis launching

• “-permissive ” on page 10-25

• “-permissive-link” on page 10-25

• “-allow-non-int-bitfield” on page 10-26

• “-allow-undef-variables” on page 10-26

• “-ignore-constant-overflows ” on page 10-27

• “-allow-unnamed-fields” on page 10-27

• “-allow-negative-operand-in-shift ” on page 10-28

-permissive
This option selects the PolySpace permissive mode, which is equivalent
to the simultaneous use of -allow-non-int-bitfield, -allow-undef-variables,
-ignore-constant-overflows, -discard-asm, -permissive-stubber,
-continue-with-red-error, and -permissive-link.

-permissive-link
When this option is used, PolySpace verification accepts integral type
conflicts between declarations and definitions on arguments or/and returning
functions.

It has an effect only

10-25

10 Options Description

• when the size of a conflicting integral type is not greater than int, or

• conflicts occur between a pointer type and an integral type of same size.

Default:

By default, PolySpace verification does not accept any conflicts between
declarations and definitions.

-allow-non-int-bitfield
This option allows the user to define types of bitfields other than those
specified by ANSI® C. The standard accepts bitfields of signed and unsigned
int types only.

Default:

Bitfields must be signed or unsigned int.

Example Shell Script Entry :

polyspace-c -allow-non-int-bitfield ...

-allow-undef-variables
When this option is used, PolySpace verification will continue in case of
linkage errors due to undefined global variables. For instance when this
option is used, PolySpace verification will tolerate a variable always being
declared as extern

Default:

Undefined variables causes PolySpace verification to stop.

Example Shell Script Entry:

polyspace-c -allow-undef-variables ...

10-26

Compliance with Standards

-ignore-constant-overflows
This option specifies that the analysis should be permissive with regards to
overflowing computations on constants. Note that it deviates from the ANSI
C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result irrespective of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-c -ignore-constant-overflows ...

-allow-unnamed-fields
When this option is used, PolySpace verification will continue in case of
compilation errors due to un-named fields in structures. For instance when
this option is used, PolySpace verification will tolerate a structure where
fields are un-named since there are no duplicate names. With the option,
the following source code is tolerate:

struct {
union { int x; int y;}
union {int z; int w;}

} s;
s.x = 2; s.z = 2;

10-27

10 Options Description

Default:

Un-named fields cause PolySpace to stop.

Example Shell Script Entry:

polyspace-c -allow-unnamed-fields ...

-allow-negative-operand-in-shift
This option permits a shift operation on a negative number.

According to the ANSI C standard, such a shift operation on a negative
number is illegal – for example,

-2 << 2

With this option in use, PolySpace verification considers the operation to be
valid. In the example, the result would be

-2 << 2 = -8

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-c -allow-negative-operand-in-shift ...

MISRA-C 2004 Rules

• “ -misra2 [all-rules | file_name]” on page 10-29

• “-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"” on page
10-29

10-28

Compliance with Standards

-misra2 [all-rules | file_name]
This option permits to check set of coding rules in conformity to
MISRA-C:2004. All MISRA checks are included in the log file of the analysis.

• Keyword all-rules: It checks all available MISRA C® rules. It implies
the use of the default configuration: any violation of MISRA C rules is
considered as a warning.

• Option filename: it is the name of an absolute ASCII file containing a list
of MISRA® rules to check.

Format of the file:

<rule number> off|error|warning
is considered as comments.
Example:
MISRA configuration file for project C89
10.5 off # disable misra rule number 10.5
17.2 error # violation misra rule 17.2 as an error
17.3 warning # non-respect to misra rule 17.3 is a only a warning

Default:

disable

Example shell script entry:

polyspace-c -misra2 all-rules ...

polyspace-c -misra2 misra.txt

-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"
This option prevents MISRA rules checking in a given list of files or directories
(all files and sub-directories under selected directory). This option is useful
when non-MISRA C conforming include headers are used. A warning is
displayed if one of the parameter does not exist.

This option is authorized only when -misra2 is used.

Example shell script entry :

10-29

10 Options Description

polyspace-c -misra2 misra.txt includes-to-ignore
"c:\usr\include"

-dialect [iar|keil]
When this option is used, PolySpace verification will take into account some
non Target Support Package™ TC6 syntax and semantic associated to a
chosen dialect between iar and kiel. It refers to the well known compilers of
the company IAR (www.iar.com) and Keil (www.keil.com).

Using this option, PolySpace verification will tolerate some new structure
types as keyword of the language such sfr, sbit, bit etc. Theses structures
and associated semantic are part of compiler which have integrated it to the
ANSI C language as an extension.

Example of source code with keil dialect:

unsigned char bdata Status[4];
sfr AU = 0xF0;
sbit OCmd = Status[0]^2;
s^2 = 1; s^6 = 0;

Example with iar dialect:

unsigned char bdata Status[4];
sfr OCmd @ 0x4FFE;
OCmd.2 = 1; s.6 = 0;

Example Shell Script Entry:

polyspace-c dialect keil

–sfr-types <sfr_name>=<size_in_bits>,<sfr_name1>=<size_in_bits1>,…

Associated to the option -dialect, if the code uses specific sfr type keyword, it
is mandatoryto declare using –sfr-types option. It gives the name of the sfr
type and its size in bits. The syntax is:

-sfr-types <sfr_name>=<size_in_bits>,

10-30

http://www.iar.com/
http://www.keil.com/

Compliance with Standards

where <sfr_name> could be any name, but most of the time we encounter sfr,
sfr16 and sfr32 . <size in bits> could be one of the values 8, 16 and 32.

Default:

No dialect used.

Example Shell Script Entry:

polyspace-c dialect iar sfr-types sfr=8,sfr32=32,sfrb=16

10-31

10 Options Description

PolySpace™ Inner Settings

In this section...

“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace™
Software” on page 10-32

“Stubbing” on page 10-35

“Assumptions” on page 10-37

“Automatic Orange Tester” on page 10-44

“Others” on page 10-45

MAIN GENERATOR OPTIONS (-main-generator) for
PolySpace™ Software
This same option can be used for both PolySpace™ Client™ for C/C++ and
PolySpace™ Server™ for C/C++, but the default behavior differs between
the two:

• Using PolySpace Server the user has the choice as to whether to activate
the option.

• Using PolySpace Client the option is activated by default.

This section describes:

• “PolySpace™ Client™ for C/C++ default behavior” on page 10-33

• “PolySpace™ Server™ for C/C++ default behavior” on page 10-33

• “-main-generator (detailed options)” on page 10-33

• “-main-generator-writes-variables [none | public | all | custom=v1,v2,.]
” on page 10-34

• “-function-called-before-main function_name” on page 10-34

• “-main-generator-calls [none | unused | all | custom=f1,f2,...]” on page
10-35

10-32

PolySpace™ Inner Settings

PolySpace™ Client™ for C/C++ default behavior
There is no need to ascertain whether the code for analysis contains a "main"
or not. That is automatically checked by the PolySpace Client for C/C++
product:

• If a main exists in the set of file(s), then the analysis continues with this
main

• Otherwise the tool generates a main with default options:
-main-generator-writes-variables public and call all unused functions
-main-generator-calls unused.

PolySpace™ Server™ for C/C++ default behavior
By default, if no main found in a PolySpace Server for C/C++ analysis, then it
will stop. This behavior can help isolate files missing from the analysis.

It is also possible to allow the PolySpace Server for C/C++ product to ascertain
whether a main is available.

• if a main is found, the analysis continues as normal.

• if not, the tool generates a main with assumption of analyzing a
library. Option used are -main-generator-writes-variables none and
-main-generator-calls none.

-main-generator (detailed options)
This option initiates the default behavior for PolySpace™ Verifier. The
generated main has two distinct purposes.

• It first initializes any variables identified in the first part of the option
(-main-generator-writes-variables)

• It then calls a function which could be considered as a initialize function
(-function-called-before-main)

• It then calls any functions identified in the second part of the option
(-main-generator-calls) in a “while (random)” loop.

Each option is described separately in the following.

10-33

10 Options Description

-main-generator-writes-variables [none | public | all |
custom=v1,v2,.]
This option is used with the -main-generator option to dictate how the
generated main will initialize global variables.

Settings available:

• -none — no global variable will be written by the main.

• -public — every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• -all — every variable except const variables are assigned a “random”
value, representing the full range of possible values

• -custom — only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example
polyspace-c -main-generator -main-generator-writes-variables none
polyspace-c -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

-function-called-before-main function_name
It is possible to specify an initialization function that will be called on startup
after the initialization of the global variables and before the main loop when
using the -main-generator option.

The skeleton of the generated main looks like:

1 Initialization of global variables

2 Call the specified function fname

3 main loop with a call to all the specified function depending of option
-main-generator-calls

Example shell script entry:

polyspace-c -main-generator function-called-before-main
MyInitFunction

10-34

PolySpace™ Inner Settings

-main-generator-calls [none | unused | all | custom=f1,f2,...]
The generated main will call functions according to this option. It is used with
the -main-generator option, to specify the functions to be called.

Possible values:

• none — no function is called. This can be used with a multitasking
application without a main (PolySpace Verifier only).

• unused (default) — every function is called by the generated main unless it
is called elsewhere by the code under analysis.

• all — every function is called by the generated main except inlined.

• custom — only functions present in the list are called from the main.
Inlined functions can be specified in the list.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called with
custom value: -main-generator-calls custom=my_inlined_func.

Example:

polyspace-c -main-generator -main-generator-calls public

polyspace-c -main-generator -main-generator-calls
custom=function_1,function_2

Stubbing

• “-data-range-specifications file_name” on page 10-35

• “-permissive-stubber ” on page 10-36

• “-no-automatic-stubbing ” on page 10-36

-data-range-specifications file_name
This option permits the setting of specific data ranges for a list of given global
variables. This option is protected by a license.

File format:

10-35

10 Options Description

The file filename contains a list of global variables with the below format:

variable_name val_min val_max <init|permanent|globalassert>

Variables scope:

Variables concern external linkage, const variables and not necessary a
defined variable (i.e. could be extern with option -allow-undef-variables).

Note Only one mode can be applied to a global variable.

No checks are added with this option except for globalassert mode.

Some warning can be displayed in log file concerning variables when format
or type is not in the scope.

Default:

Disable.

Example shell script entry:

polyspace-c -data-range-specifications range.txt ...

-permissive-stubber
By default, the stubber rejects functions:

• with complex function pointers as parameters

• with function pointers as return type

With this option, all functions are stubbed, at any cost (results may be wrong).

-no-automatic-stubbing
By default, PolySpace verification automatically stubs all functions. When
this option is used, the list of functions to be stubbed is displayed and the
analysis is stopped.

10-36

PolySpace™ Inner Settings

Benefits:

This option may be used where

• The entire code is to be provided, which may be the case when analyzing
a large piece of code. When the analysis stops, it means the code is not
complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
analysis.

Default:

All functions are stubbed automatically

Assumptions

• “-div-round-down ” on page 10-37

• “-no-def-init-glob ” on page 10-38

• “-size-in-bytes ” on page 10-39

• “-allow-ptr-arith-on-struct ” on page 10-39

• “-ignore-float-rounding” on page 10-41

• “-detect-unsigned-overflows ” on page 10-43

• “-known-NTC proc1[,proc2[,...]]” on page 10-44

-div-round-down
This option concerns the division and modulus of a negative number.

The ANSI® standard stipulates that "if either operand of / or % is negative,
whether the result of the / operator, is the largest integer less or equal than the
algebraic quotient or the smallest integer greater or equal than the quotient, is
implementation defined, same for the sign of the % operator".

Note a = (a / b) * b + a % b is always true.

10-37

10 Options Description

Default:

Without the option (default mode), if either operand of / or % is negative,
the result of the / operator is the smallest integer greater or equal than the
algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b

Example:

assert(-5/3 == -1 && -5%3 == -2); is true .

With the -div-round-down option:

If either operand / or % is negative, the result of the / operator is the largest
integer less or equal than the algebraic quotient. The result of the % operator
is deduced from a % b = a - (a / b) * b .

Example:

assert(-5/3 == -2 && -5%3 == 1); is true .

Example Shell Script Entry:

polyspace-c -div-round-down ...

-no-def-init-glob
This option specifies that PolySpace verification should not take into account
default initialization defined by ANSI C. When this option is not used, default
initialization are

• 0 for integers

• 0 for characters

• 0.0 for floats

With the option in use, all global variable will be treated as non initialized -
and therefore cause a red error - if they are read before being written to.

10-38

PolySpace™ Inner Settings

Example Shell Script Entry :

polyspace-c -no-def-init-glob ...

-size-in-bytes
This option allows incomplete or partial allocation of structures. This
allocation can be made by malloc or cast .

The example below shows an example using malloc. Further explanation can
be found in the section describing the partial and incomplete allocation of
structures. Also refer to the -allow-ptr-arith-on-struct section.

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;
BIG *p = malloc(sizeof(LITTLE));

Default results

p->a = 0 ; // red pointer out of its bounds
or p->b = 0 ; // red pointer out of its bounds
or p->c = 0 ; // red pointer out of its bounds

Results using this option

if (p!= ((void *) 0)) {
p->a = 0 ; // green pointer within bounds

or p->b = 0 ; // green pointer within bounds
or p->c = 0 ; // red pointer out of its bounds
}

-allow-ptr-arith-on-struct
This option enables navigation within a structure or union from one field to
another, within the rules defined below. It automatically sets the -size-in-bytes
option.

Default

By default, when a pointer points to a variable then the size of the objected
pointed to is that of that variable - irrespective of whether it is contained

10-39

10 Options Description

within a bigger object, like a structure. Therefore, going out of the scope of
this variable leads to a red IDP check (Illegal Dereference Pointer). This is
illustrated below.

struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // red on the dereference, because the pointed

object was "b"

Using this option

When this option is used in the above option, PolySpace verification considers
that the object pointed to is now the host object "x". The "ptr" pointer is in
fact pointing to &x, with the correct offset to the field “b” within the structure
of type S (inter-fields and end-padding included). Therefore, the dereference
becomes green

Consider a second example:

struct S {
char a;
/* 3 bytes of padding between 'a', 'b' */
int b;
int c;
char d[3];
unsigned char e:7;
char f;
/* 3 bytes of end padding */

} x;
char *ptr;
struct Nesting_S {
struct S s;
int c;

} z
ptr = (char *)&x.a; ptr++; *ptr = 10; // ptr points to the
padding between a and b
ptr = (char *)&x.b; ptr += 4; *ptr = 10; // ptr points to the
first byte of c
ptr = (char *)&x.d; ptr += 3; *ptr = 10; // ptr points to the
ptr = (char *)&x.f; ptr++; *ptr = 10; // ptr points to the

10-40

PolySpace™ Inner Settings

first byte of end-padding

Note For nested structures, for instance with ptr = (char *)&x.d.a, the
dereference of *ptr is green if ptr remains within x.d. However, even with this
option in use, a red check is generated if the pointer navigates above x.d.a.
That is, if this pointer is incremented or decremented such that it now to
x.a, x.b, or x.c, it causes a red IDP.

In the third example below, the *ptr access is red irrespective of whether
the option is set or not.

With the option set, the ptr pointer points to the structure+offset z.s, and ptr
can safely navigate within this structure z.s, but z.c is outside it.

Without the option, the ptr pointer points to z.s.f, which is only 1 byte long.
So no navigation is allowed, not even within z.s.

ptr = (char *)z.s.f; ptr += 4; *ptr = 10; // ptr points to the
first byte of c:

-ignore-float-rounding
Without this option, PolySpace verification rounds floats according to the
IEEE® 754 standard: simple precision on 32-bits targets and double precision
on target which define double as 64-bits.

With the option, exact computation is performed.

Example:

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f;
8 // reached when -ignore-float-rounding is used or not
9 }

10-41

10 Options Description

10 else {
11 assert (1);
12 f = 1.0F * f;
13 // reached when compiled when -ignore-float-rounding is not used
14 }
15 }

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
PolySpace verification while they are not (or are) depending of the compiler
and target. So it can potentially give approximate results (green should be
unproven). This option has an impact on OVFL/UNFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f; // Overflow never occurs because f <= FLT_MAX.
8 // reached when -ignore-float-rounding is used
9 }
10 else {
11 assert (1);
12 f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)
13 // reached when -ignore-float-rounding is not used
14 }
15 }

Default:

IEEE 754 rounding under 32 bits and 64 bits.

10-42

PolySpace™ Inner Settings

Example Shell Script Entry:

polyspace-c -ignore-float-rounding ...

-detect-unsigned-overflows
When this option is selected, PolySpace verification becomes more pedantic
than the ANSI C standard requires, with regards overflowing computations
on unsigned integers

Consider the examples below, which apply when the option is in use.

Example 1

unsigned char x;

x = 255;

x = x+1;//causes an overflow according to this option.

Example 2

unsigned char y=1;

y &= ~y; //causes an overflow because of type promotion

Default:

Without this option in place, Example 1 would generate no error.

unsigned char x;

x = 255;

x = x+1;// turns x into 0 (wrap around)

Example Shell Script Entry:

polyspace-c -detect-unsigned-overflows ...

10-43

10 Options Description

-known-NTC proc1[,proc2[,...]]
After a few analyses, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops
by design, while functions that exit the program such as kill_task , exit or
Terminate_Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC specified
at launch will appear in the viewer in the known-NTC category, and filtering
will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :

polyspace-c -known-NTC "kill_task,exit"

polyspace-c -known-NTC "Exit,Terminate_Thread"

Automatic Orange Tester

-prepare-automatic-tests
This option activates the PolySpace Automatic Orange Tester. The Automatic
Orange Tester finds run-time errors in the orange (and red) checks remaining
at the end of the PolySpace verification.

The Automatic Orange Tester results contain precise information to help you
identify the cause of a run-time error. This complements the results review in
the Viewer module of PolySpace Client for C/C++.

For more information, see “Automatically Testing Orange Code ” on page 9-33.

The following options are not compatible with -prepare-automatic-tests.

10-44

PolySpace™ Inner Settings

• -entry-points

• -dialect

• -ignore-float-rounding

• -div-round-down

• -entry-points

• -char-is-16bits

• -short-is-8bits

• -respect-types-in-globals

• -respect-types-in-fields

The following options cannot take specific values when you select
-prepare-automatic-tests.

• -align [8|16]

• -target [c-167 | tms320c3c | hc08 | sharc21x61]

• -data-range-specification (in global assert mode)

In addition, when using the Automatic Orange Tester, the -target mcpu
option must be used together with -pointer-is-32bits.

Default :

Disabled

Example Shell Script Entry :

polyspace-c -prepare-automatic-tests ...

Others

• “-extra-flags option-extra-flag” on page 10-46

• “-c-extra-flags flag” on page 10-46

10-45

10 Options Description

-extra-flags option-extra-flag
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by Tehnical Support as necessary for your
analyses.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -extra-flags -param1 -extra-flags -param2 \

-extra-flags 10 ...

-c-extra-flags flag
This option is used to specify an expert option to be added to an analysis. Each
word of the option (even the parameters) must be preceded by -c-extra-flags.

These flags will be given to you by The Mathworks as necessary for your
analyses.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -c-extra-flags -param1 -c-extra-flags -param2
-c-extra-flags 10

10-46

Precision/Scaling

Precision/Scaling

In this section...

“-quick” on page 10-47

“-O(0-3)” on page 10-48

“-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]] ” on page 10-49

“-from verification-phase” on page 10-49

“-to verification-phase” on page 10-50

“-context-sensitivity "proc1[,proc2[,...]]"” on page 10-51

“-context-sensitivity-auto” on page 10-51

“-path-sensitivity-delta number” on page 10-52

“-retype-pointer ” on page 10-52

“-retype-int-pointer” on page 10-53

“-k-limiting number ” on page 10-54

“-no-fold ” on page 10-55

“-respect-types-in-globals” on page 10-55

“-respect-types-in-fields” on page 10-56

“-inline "proc1[,proc2[,...]]"” on page 10-57

“-lightweight-thread-model” on page 10-57

-quick
This option is used to select a very fast mode for PolySpace™ C Verifier. This
option cannot be used with the -O(0-3), -from, -to and -modules-precision
options.

Benefits
This option allows results to be generated very quickly. These are suitable for
initial analysis of red and grey errors only, as orange checks are too plentiful
to be relevant using this option.

10-47

10 Options Description

Quick mode is up to 25 times faster than a typical analysis using a specified
combination of precision level and integration level.

Limitations

• No NTL or NTC are displayed (non termination of loop/call)

• The variable dictionary is not available

• No check is performed on floats

• The call tree is available but navigation is not possible

• Orange checks are too plentiful to be relevant

-O(0-3)
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more analysis time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during analysis.

It is recommended that analyses should begin with the -quick option. Red
errors and grey code can then be addressed before re-launching Verifier using
this option, applying a precision level as described below.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means higher analysis time

- -O0 corresponds to static interval analysis.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,

10-48

Precision/Scaling

resulting in a very long analysis time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-c -O1 -to pass4 ...

-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
This option is used to specify the list of .c files to be analyzed with a different
precision from that specified generally -O(0-3) for this analysis.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default:

All modules are treated with the same precision.

Example Shell Script Entry:

polyspace-c -O1 \
-modules-precision myMath:O2,myText:O1, ...

-from verification-phase
This option specifies the verification phase to start from. It can only be used
on an existing analysis, possibly to elaborate on the results that you have
already obtained.

For example, if an analysis has been completed -to pass1, PolySpace
verification can be restarted -from pass1 and hence save on analysis time.

The option is usually used in an analysis after one run with the -to option,
although it can also be used to recover after power failure.

10-49

10 Options Description

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Note

• Unless the scratch option is used, this option can be used only if the
previous analysis was launched using the option -keep-all-files .

• This option cannot be used if you modify the source code between analyses.

Default :

scratch

Example Shell Script Entry :

polyspace-c -from c-to-il ...

-to verification-phase
This option specifies the verification phase after which the Verifier will stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading to
"finding more bugs" with the code.

• A higher integration level also means higher analysis time

Possible values:

• c-compile or "C Source Compliance Checking"

• c-to-il or normalize or "C to Intermediate Language"

• pass0 or CDFA or "Control and Data Flow Analysis"

10-50

Precision/Scaling

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4"

• other

Note If you use -to other then PolySpace verification will continue until you
stop it manually (via kill-rte-kernel) or stops until it has reached pass20.

Default:

pass4

Example Shell Script Entry:

polyspace-c -to "Software Safety Analysis level 3"...

polyspace-c -to pass0 ...

-context-sensitivity "proc1[,proc2[,...]]"
This option allows the precise analysis of a procedure with regards to the
discrete calls to it in the analyzed code.

Each check inside the procedure is split into several sub-checks depending
on the context of call. Therefore if a check is red for one call to the procedure
and green for another, both colors will be revealed.

This option is especially useful if a problem function is called from a multitude
of places.

-context-sensitivity-auto
This option is similar to the -context-sensitivity option, except that the system
automatically chooses the procedures to be considered.

10-51

10 Options Description

-path-sensitivity-delta number
This option is used to improve interprocedural analysis precision within a
particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer analysis time.

Consider two analyses, one with this option set to 1 (with), and one without
this option (without)

• a level 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

• a level 1 analysis in (with) can last x times more than a cumulated level
1+2 analysis from (without). "x" might be exponential.

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-c -path-sensitivity-delta 1 ...

-retype-pointer
This option can be used to retype variables of pointer types in order to improve
precision of pointer conversions chain.

The principle consists in replacing original type by the aliased object type
when a symbol of pointer type aliases to a single type of objects.

10-52

Precision/Scaling

For example, following assert can be proved using -retype-pointer option:

struct A {int a; char b;} s = {1,2};
char *tmp = (char *)&s;
struct A *pa = (struct A*)tmp;
assert((pa->a == 1) && (pa->b == 2));

This principle can be applied to fields of struct/unions of a pointer type.
However, this option set -size-in-bytes option and it does not have expected
precision with -allow-ptr-arith-on-struct.

Moreover, this option is forbidden when using -retype-int-pointer option.

Default:

disable by default

Example Shell ScriptEntry:

polyspace-c -retype-pointer ...

-retype-int-pointer
This option can be used to retype variables of pointer to signed or
unsigned integer types in order to improve precision of pointer conversions
chain.

The principle consists in replacing original type by the aliased object type
when a symbol of pointer type aliases to a single type of objects. It applies
only on symbols of signed or unsigned integer types.

For example, following assert can be proved using -retype-int-pointer option:

void function(void)
{
struct S1 {
int x;
int y;
int z;
char t;

} s1 = {1,2,3,4};

10-53

10 Options Description

struct S2 {
int first;
void *p;

} s2;
int addr;
addr = (int)(&s1);
assert(((struct S1 *)addr)->y == 2); // ASRT is verified
s2.first = (int)(&s1);
assert(((struct S1 *)s2.first)->y == 2); // ASRT is verified

}

However, this option set -size-in-bytes and has no effect when set
-respect-types-in-globals on global symbols of integer types and when set
-respect-types-in-fields on fields of struct/union of integer types.

Some sides effects can be noticed on PolySpace checks concerning initialization
on variables which can be stated as initialization on pointer check (NIP).

Moreover, this option implies -retype-pointer option.

Default:

Disable by default

Example Shell ScriptEntry:

polyspace-c -retype-int-pointer...

-k-limiting number
This is a scaling option to limits the depth of analysis into nested structures
during pointer analysis.

This option is only available for C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

10-54

Precision/Scaling

polyspace-c -k-limiting 1 ...

In this example above, analysis will be precise to only one level of nesting.

-no-fold
When variables are defined with huge static initialization, scaling problems
may occur during the compilation phase. This option approximates the
initialization of array types of integer, floating point, and char types (included
string) if needed.

It can speed up the analysis, but may decrease precision for some applications

Default:

Option not set.

Example Shell Script Entry:

polyspace-c -no-fold ...

-respect-types-in-globals
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace verification assumes that global variables not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using option
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
(int)x = 1; // x contains address of y
assert (y == 0); // green with the option

10-55

10 Options Description

}

PolySpace verification will not take care that x contains the address of y
resulting a green assert.

Default:

PolySpace verification assumes that global variables may contain pointer
values.

Example Shell Script Entry:

polyspace-c -respect-types-in-globals ...

-respect-types-in-fields
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace verification assumes that structure fields not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-globals.

In the following example, we will lose precision using option
–respect-types-in-fields option:

struct {
unsigned x;
int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
tmp = 1; / write 1 into y */
assert(y==0);

}

10-56

Precision/Scaling

PolySpace verification will not take care that S1.x contains the address of y
resulting a green assert.

Default:

PolySpace verification assumes that structure fields may contain pointer
values.

Example Shell Script Entry:

polyspace-c -respect-types-in-fields ...

-inline "proc1[,proc2[,...]]"
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention viz:

procedure1_pst_cloned_nb,

where nb is a unique number giving the total number of cloned procedures.

Such an inlining allows the number of aliases in a given procedure to be
reduced, and may also improve precision.

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided by
the alias analysis

• This option should not be used on main, task entry points and critical
section entry points

-lightweight-thread-model
This scaling option can be used to reduce task complexity (see also
-entry-points).

10-57

10 Options Description

It uses a slightly less precise model of pointer/thread interaction compared
to that used by default, and is likely to prove helpful when there are a lot
of pointers in an application. See Chapter 9, “PolySpace™ Methodological
Guide” for more explanation of when to use it.

It causes a loss of precision:

• It causes a slight loss of precision when shared variables are reads via
pointers.

• Some read/write accesses may not appear in the Global Variable Dictionary.

Default:

disabled by default.

Example Shell Script Entry :

polyspace-c -lightweight-thread-model ...
polyspace-c -lwtm ...

10-58

MultiTasking (PolySpace™ Server™ for C/C++ Product Only)

MultiTasking (PolySpace™ Server™ for C/C++ Product
Only)

In this section...

“-entry-points str1[,str2[,...]]” on page 10-59

“-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"” on page 10-59

“-temporal-exclusions-file file_name” on page 10-60

Note Concurrency options are not compatible with -main-generator options.

-entry-points str1[,str2[,...]]
This option is used to specify the tasks/entry points to be analyzed by
PolySpace™ server, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Using PolySpace verification, c tasks must have the prototype "void
task_name(void);".

Example Shell Script Entry:

polyspace-c -entry-points proc1,proc2,proc3 ...

-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with list

10-59

10 Options Description

entries separated by commas, and no spaces. Entries in the lists take the
form of the procedure name followed by the name of the critical section, with a
colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-c -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

-temporal-exclusions-file file_name
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Default:

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

10-60

MultiTasking (PolySpace™ Server™ for C/C++ Product Only)

Example Shell Script Entry :

polyspace-c -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

10-61

10 Options Description

Batch Options

In this section...

“-server server_name_or_ip[:port_number]” on page 10-62

“-sources-list-file file_name” on page 10-62

“-v | -version” on page 10-63

“-h[elp]” on page 10-63

-server server_name_or_ip[:port_number]
Using polyspace-remote[-desktop]-[ada] [–server [name or IP address][:<port
number>]] allows to send analysis to a specific or referenced PolySpace Queue
manager server.

Note If the option –server is not specified, the default server referenced in
the PolySpace-Launcher.prf configuration file will be used as server.

When a –server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-desktop-c server 192.168.1.124:12400

polyspace-remote-c

polyspace-remote-c server Bergeron

-sources-list-file file_name
This option is only available in batch mode. The syntax of file_name is the
following:

10-62

Batch Options

• One file per line.

• Each file name includes its absolute or relative path.

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"

polyspace-c -sources-list-file "files.txt"

-v | -version
Display the PolySpace™ version number.

Example Shell Script Entry:

polyspace-c v

It will show a result similar to:

PolySpace r2007a+

Copyright (c) 1999-2008 The Mathworks, Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-c h

10-63

10 Options Description

Complete Examples

In this section...

“Simple C Example” on page 10-64

“Apache Example” on page 10-64

“cxref Example” on page 10-65

“T31 Example” on page 10-65

“Dishwasher1 Example” on page 10-65

“Satellite Example” on page 10-66

Simple C Example
polyspace-c \
-prog myCproject \
-O1 \
-I /home/user/includes \
-D SUN4 -D USE_FILES \

Apache Example
Here is a script for verifying the code for Apache (after proper formatting).
The source code is in C and the compilation is for a Sun™.

Note The use of O0 to reduce analysis time.

polyspace-c \ \
-target sparc \
-prog Apache \
-keep-all-files \
-allow-undef-variables \
-continue-with-red-error \
-O0 \
-D PST \
-D __GNUC_MINOR__=6 -D SOLARIS2=270 -D USE_EXPAT \
-D NO_DL_NEEDED \

10-64

Complete Examples

-I sources \
-I /usr/local/pst/include.sparc \
-I /usr/include \
-results-dir RESULTS

cxref Example
Here is another C launch command. The compilation is for Linux®. Note the
escape characters, allowing quoted strings to be used as compiler defines.

polyspace-c \
-OS-target linux \
-prog cxref \
-O0 \
-I `pwd` \
-I sources \
-I <<PolySpace_Verifer_Installation_Path>>/include/include.linux \
-D CXREF_CPP='\"/usr/local/gcc/bin/cpp\"' \
-D PAGE='\"A4\"' \
-results-dir RESULTS

T31 Example
Another simple C launcher. There are a couple of tasks and compilation is
for an m68k.

polyspace-c \
-target m68k \
-entry-points task_callback_main,task_tcp_main,cdtask_depm_main,

task_receiver \
-to pass1 \
-prog T31 \
-O0 \
-results-dir `pwd`/RESULTS_31 \
-keep-all-files

Dishwasher1 Example
Another C example. This one is for the c-167 and has tasks protected by
critical section.

polyspace-c \
-target c-167 \

10-65

10 Options Description

-entry-points periodic,pst_main \
-D PST -D const= -D water= \
-from scratch \
-to pass4 \
-critical-section-begin "critical_enter:cs1" \
-critical-section-end "critical_exit:cs1" \
-prog dishwasher1 \
-I `pwd`/sources \
-O0 \
-keep-all-files \
-results-dir RESULTS

Satellite Example
A C example with tasks and critical sections.

polyspace-c
-target c-167 \
-entry-points ctask0,ctask1,ctask2,ctask3,interrupts \
-O2 \
-keep-all-files \
-from scratch \
-critical-section-begin "DisableInterrupts:sc1" \
-critical-section-end "EnableInterrupts:sc1" \
-ignore-constant-overflows \
-include `pwd`/sources/options.h \
-to pass4 \
-prog satellite \
-I `pwd`/sources \
-results-dir RESULTS

10-66

A

Static Verification

What is Static Verification (p. A-2) Describes static verification

Exhaustiveness (p. A-4) Describes the thoroughness of static
verification

A Static Verification

What is Static Verification
Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. Static
Verification differs significantly from other techniques, such as run-time
debugging, in that the analysis it provides is not based on a given test case or
set of test cases. The dynamic properties obtained in the PolySpace analysis
are true for all executions of the software.

Most Static Verification tools only provide an analysis of the complexity of the
software, in a search for constructs which may be potentially dangerous.

PolySpace provides deep-level analysis identifying almost all run-time errors
and possible access conflicts on global shared data.

The idea is to use an approximation of the software under analysis, using safe
and representative approximations of software operations and data.

An example is given below:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required
to establish that - and hence the gain in efficiency compared to traditional
approaches.

A-2

What is Static Verification

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

A-3

A Static Verification

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no run time error (RTE)
item to be checked can be missed by PolySpace.

A-4

Glossary

Glossary

Analysis
In order to use a PolySpace tool, the code is prepared and an analysis is
launched which is turn produces results for review.

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision

Certain error
See red error

Check
Test performed by PolySpace during analysis, colored red, orange, green
or grey in the viewer

Dead Code
Code which is inaccessible at execution time under all circumstances,
due to the logic of the software executed before it.

Development Process
Development process used within a company to progress through the
software development lifecycle.

Green check
Check found to be confirmed as error free.

Glossary-1

Glossary

Grey code
Dead code.

Imprecision
Approximations made during PolySpace analysis, so that data values
possible at execution time are represented by supersets including those
values

mcpu
Micro Controller/Processor Unit

Orange warning
Check found to represent a possible error, which may be revealed on
further investigation.

PolySpace Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An analysis which includes few inconclusive orange checks is said to be
precise

Progress text
Output from PolySpace during analysis to indicate what proportion of
the analysis has been completed. Could be considered as a “textual
progress bar”.

Red error
Check found to represent a definite error

Review
Inspection of the results produced by a PolySpace analysis, using the
Viewer.

Scaling option
Option applied when an application submitted to PolySpace Verifier
proves to be bigger or more complex than is practical.

Glossary-2

Glossary

Selectivitiy
The ratio of (green + grey + red) / (total amount of checks)

Unreachable code
Dead code

Glossary-3

	PolySpace Client/Server for C User's Guide
	PolySpace Documentation Set
	About this Guide
	How to Use this Guide
	Analyzing One File
	Analyzing Code Generated from Simulink Models
	Analyzing Multiple Files
	Detailed Contents

	Getting Started
	General Requirements
	Computer Configuration
	Timing Information
	Installation Guide
	Structure of this Document

	PolySpace Client — Analyzing a Single C File
	Overview
	Analysis Prerequisites
	Setting Up a PolySpace ™ Client for C/C++ Analysis
	PolySpace ™ Client for C/C++: Running the Analysis
	Parsing Errors During Preliminary Analysis Stages
	Progression of the Analysis
	End of the Analysis

	PolySpace Viewer — Exploring Results
	Overview
	Modes of Operation
	Download Results into the Viewer
	Reviewing PolySpace Results in “Expert” Mode (“example.c”)
	Procedural Entities View (RTE View)
	Colors in the Source Code View
	More Examples of Run-Time Errors
	Advanced Results Exploration
	Miscellaneous

	Methodological Assistant
	Assistant Dashboard
	Choose a Methodological Assistant

	Report Generation

	Setting Up and Launching the MISRA C Checker
	Before You Begin
	Overview
	Activating the MISRA C Checker

	Selecting MISRA C Rules to Check
	File Configuration
	Discard Header Files from MISRA Checking

	Running the MISRA Checker

	Launching PolySpace Analysis Remotely
	Overview
	Launching an Analysis
	Management of PolySpace Analysis in Remote: the PolySpace Spoole
	Batch Commands
	Launching an Analysis in Batch
	Managing an Analysis in Batch

	Sharing Analyses Between Accounts
	Analysis-key.text File
	Example:
	Magic Key or Shared Analysis Between Projects

	Summary

	Analysis Setup
	Compile Errors
	Overview
	Messages
	Syntax error
	Undeclared identifier
	No such file or directory
	Compilation errors with key words: @interrupt, @address(0xABCDEF

	Compiling Operating System Dependent Code (OS-target issues)
	List of already predefined compilation flags
	My target application runs on a Linux OS
	My target application runs on Solaris
	My target application runs on Vxworks
	My target application runs neither on Linux, vxworks nor Solaris

	Target Specific Issues
	Target Specification (size of char, int, float, double...)
	Generic/Custom Target
	Address Alignment
	”KEIL” and “IAR” Dialects
	Keywords to Automatically Ignore or Replace, Before Compilation

	Assembly Code
	All statements are ignored: the rest of the function remains unc
	Following example is automatically stubbed
	All following examples have an empty body
	#asm and #endasm support
	What to do if -discard-asm failes parsing an asm code section

	Dealing with Backward “goto” Statements

	Link Messages
	Overview
	Function: Wrong Argument Type
	Function: Wrong Argument Number
	Variable: Wrong Type
	Variable: Signed/Unsigned
	Variable: Different Qualifier
	Variable: Array Against Variable
	Variable: Wrong Array Size
	Missing Required Prototype for varargs
	Can an Application without “main” be Analyzed? (For non Client m

	Stubbing Errors
	Errors when Compiling _polyspace_stdstubs.c
	Standard Error Messages
	Stubbing standard library functions ...
	Stubbing standard library functions ...
	Stubbing standard library functions ...
	Troubleshooting

	Errors when Creating Automatic Stubs
	Error 1
	Error 2
	Error 3

	How to Gather Compilations Options Efficiently
	Example
	Stubbing
	Manual vs. Automatic Stubbing
	The Stubbing Options PURE and WORST
	The Default and Alternative Behavior for Stubbing
	Function Pointer Cases
	Stubbing Functions with a Variable Argument Number
	Finding Bugs in _polyspace_stdstubs.c

	Intermediate Language Errors
	Advanced Setup
	Variables — Declaration and Definition
	Types Promotion
	An Example of an Unsigned Promoted to Signed
	What are the Promotions Rules in Operators?
	Example

	Code Preparation for Variables
	How can I assign ranges to variables/assert?
	Checking properties on global variables at any point: Global ass
	How can I model variable values external to my application?
	How are variables initialized?

	Code Preparation for Built-in Functions
	My Code is Multitasking
	Modelling Tasks, Interruptions and Events
	Solution 1
	Solution 2
	Solution 1: Where interrupts (ISRs) CANNOT pre-empt each other
	Solution 2: Where interrupts CAN pre-empt each other

	Shared Variables
	Original Code
	File Replacing the Original Include File
	Command line to launch PolySpace Verifier

	Miscellaneous

	PolySpace Software Day to Day Usage
	PolySpace In One Click Overview
	Using PolySpace In One Click
	Overview
	Creating an Active Configuration File Project
	Using the TaskBar Icon

	Using Right-Click to Launch PolySpace Verification

	MISRA Checker
	PolySpace MISRA Checker Overview
	Rules Supported
	Language Extensions
	Character Sets
	Identifiers
	Types
	Constants
	Declarations and Definitions
	Initialization
	Arithmetic Type Conversion
	Pointer Type Conversion
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessing Directives
	Standard Libraries
	Run-Time Failures

	Rules Partially Supported
	Environment
	Language Extension
	Identifier
	Declarations and Definitions
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Preprocessing Directives

	Rules Not Checked
	Environment
	Language Extensions
	Documentation
	Types
	Functions
	Pointers and Arrays
	Structures and Unions
	Standard Libraries

	Data Range Specifications
	Overview
	File Format
	Variable Scope
	Reduce Oranges with DRS
	Perform Efficient Module Testing
	Reduce Oranges with the —data-range-specification option
	Why Only on Modules
	Example

	Using PolySpace Model Link Products
	Overview of PolySpace Model Link Products
	Getting Started
	Overview
	Creating a Simulink Model and Generating Production Code
	Starting the PolySpace Analysis
	Fixing an Error in the Design and the Simulink Model
	Base Workspace vs. PolySpace Data Ranges
	Prerequisites
	Update Range of Signals
	Re-Generate Code and Launch the PolySpace Analysis Again

	Advanced Setup
	Hand-written Code
	Target Production Environment
	Creating a PolySpace Configuration File Template
	Using the PolySpace Blocks Available in the Simulink Library

	PolySpace Utilities
	Overview of PolySpace Utilities
	Open PolySpace Results
	PolySpace Enable COM Server
	PolySpace Menu
	Analysis Management
	General Options

	PolySpace Project Configuration
	Archives Files Produced for the PolySpace Analysis
	Template files located in MATLAB installation directory\polyspac
	Files used in the model directory
	Auto-generated files in the model directory

	PolySpace Commands Available in Batch Mode as M-Functions
	Example with EmbeddedCoder:

	Code Generator Specific Information
	PolySpace Model Link SL Product
	Subsystems
	Default Options
	Data Range Specification
	Code Generation Options

	PolySpace Model Link TL Product
	Subsystems
	Data Range Specification
	Lookup Tables
	Code Generation Options

	Results Review
	Basics: Prerequisites to Reviewing PolySpace Results
	Overview
	Grey Follows Red
	Summary

	What is the Message and What does it Mean?
	Explanation
	Summary

	What is the C Explanation
	Summary

	Specific Check Analysis
	PolySpace Memorizes the Relationships Between Variables
	The Purpose of the -continue-with-red-error Option.
	Default Settings, -continue-with-red-error and Side Effects
	Why There Might be 2 Distinct Colors in a while/for Statement.

	Colored Source Code for C
	Illegal Pointer Access to Variable or Structure Field: IDP
	Array Conversion Must Not Extend Range: COR
	Array Index Within Bounds: OBAI
	Initialized Return Value: IRV
	Non-Initialized Variables: NIV/NIVL
	Non-Initialized Pointer: NIP
	Power Arithmetic: POW
	User Assertion: ASRT
	Scalar and Float Underflows: UNFL
	Scalar and Float Overflows: OVFL
	Left shift overflow on signed variables: OVFL

	Float Underflows and Overflows: UOVFL
	How Much is the Biggest Float in C?
	What is the Type of Constants/What is a Constant Overflow?
	Float Underflow Versus Values Near Zero: UNFL

	Scalar or Float Division by Zero: ZDV
	Shift Amount in 0..31 (0..63):SHF
	Left Operand or Left Shift is Negative: SHF
	Function Pointer Must Point to a Valid Function: COR
	Wrong Type for Argument: COR
	Wrong Number of Arguments: COR
	Wrong Return Type of a Function Pointer: COR
	Wrong Return Type for Arithmetic Functions: COR
	Results without <math.h>:
	Results with <math.h>:
	Pointer Within Bounds: IDP
	Understanding Addressing
	Understanding Pointers

	Non Termination of Call or Loop
	Non Termination of a Call: NTC
	Known Non-Termination of a Call: k-NTC
	Non Termination of Loop: NTL
	Arithmetic Expressions: NTC

	Unreachable Code: UNR
	Value on Assignment: VOA
	Inspection Points: IPT

	PolySpace Methodological Guide
	Overview
	PolySpace Usage
	Overview of the PolySpace Approach
	When No Coding Rules Are Adopted
	When Coding Rules Have Been Adopted
	In a Certification Context
	As an Acceptance Tool

	Standard Development Process
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	A Complementary Approach
	Integration with Configuration Management Tools
	Costs and Benefits

	Rigorous Development Process: Introducing Tools and Coding Rules
	Overview
	The Software Development Process
	The PolySpace Approach
	A Complementary Approach
	Costs and Benefits

	A Quality/Qualification Approach
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	Costs and Benefits

	Code Acceptance Criterion
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach

	PolySpace Activities
	Review Run Time Errors: Fix Red Errors
	Review Dead Code Checks: Why is Grey Code Interesting
	Functional Bugs Can Be Found in Grey Code
	Structural Coverage

	How to Find a Maximum Number of Bugs Within an Hour Reviewing Or
	Overview
	How
	Why
	In Practice
	Step by Step
	Which Category of Checks Should I Choose First
	Exhaustive Orange Review at Unit Phase

	Cost and Benefits of an Exhaustive Orange Review at Integration
	Benefits
	Costs
	Method

	Integration Bug Tracking
	How to Find Bugs in Unprotected Shared Data
	Dataflow Analysis
	Data and Coding Rules

	Automatically Testing Orange Code
	PolySpace Automatic Orange Tester
	How the Automatic Orange Tester Works
	Limitations of Dynamic Testing

	Using the Automatic Orange Tester
	Before Using the Automatic Orange Tester
	Launching the Automatic Orange Tester
	Reviewing the Test Results
	Refining Data Ranges
	Saving and Reusing Your Configuration
	Exporting Data Ranges for PolySpace Verification
	Configuring Compiler Options

	Technical Limitations
	Unsupported PolySpace Options
	Options with Limitations
	Unsupported C Language Constructions

	How to Get the Best Results
	Reduce Oranges Step by Step
	Generic Objectives: A Balance Between Precision and Analysis Tim
	Options at Launching Time
	Vary the Precision Level
	Apply Software Safety Level Wisely
	Add Precision Constraints at the Periphery Via Stubs
	Describe Multitasking Behavior Properly
	Tuning Advanced Parameters

	How to Conclude an Orange Review
	What is an Orange?
	What are the Different Sources of Oranges?
	How to Determine the Cause of an Orange?

	Duration of Analysis
	How Far has the Analysis Gone? How Can I Predict the Analysis Du
	Example
	Reducing Analysis Time
	Example 1
	Example 2
	Example 3
	Some Consequences
	Typical Examples of Removable Components, According to the Logic
	Subdivision According to Data-Flow
	Subdivide According to Real-Time Characteristics
	Subdivide According to Files
	When the Application is Incomplete
	Considering the Effects of Application Code Size

	Applying Coding Rules to Reduce Oranges
	MISRA Rules Which PolySpace Verification Can Help to Follow
	Recommended Set of Coding Rules
	Set of Coding Rules with a Direct Impact on Selectivity
	Set of Coding Rules with an Indirect Impact on Selectivity

	Approximations Made by PolySpace Verification
	Volatile Variables
	Structures with Volatile Fields
	Absolute Addresses
	Pointer Comparison
	Left Shift on Negative Variables
	Some Bitwise Operators
	Float Loops
	Shared Variables
	Array of Function Pointers
	Trigonometric Functions
	Unions
	Loop Exit Conditions
	Constant Pointer

	Options Description
	General
	Overview
	-prog Session identifier
	-date Date
	-author Author
	-verif-version Version
	-voa
	-keep-all-files
	-continue-with-red-error
	-continue-with-existing-host
	-allow-unsupported-linux
	-results-dir Results Directory
	-sources "files" or -sources-list-file file_name
	-I directory

	Target/Compiler
	Overview
	-target TargetProcessorType
	GENERIC ADVANCED TARGET OPTIONS
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]
	-logical-signed-right-shift

	-OS-target OperatingSystemTargetForPolySpaceStubs
	-D compiler-flag
	-U compiler-flag
	-include file_name
	-post-preprocessing-command <file_name> or "command"
	-post-analysis-command <file_name> or "command"

	Compliance with Standards
	-dos
	Embedded Assembler
	-discard-asm
	Pragmas asm

	Strictness during analysis launching
	-strict
	-wall

	Permissiveness during analysis launching
	-permissive
	-permissive-link
	-allow-non-int-bitfield
	-allow-undef-variables
	-ignore-constant-overflows
	-allow-unnamed-fields
	-allow-negative-operand-in-shift

	MISRA-C 2004 Rules
	 -misra2 [all-rules | file_name]
	-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]

	-dialect [iar|keil]

	PolySpace Inner Settings
	MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software
	PolySpace ™ Client for C/C++ default behavior
	PolySpace ™ Server for C/C++ default behavior
	-main-generator (detailed options)
	-main-generator-writes-variables [none | public | all | custom=
	-function-called-before-main function_name
	-main-generator-calls [none | unused | all | custom=f1,f2,...]

	Stubbing
	-data-range-specifications file_name
	-permissive-stubber
	-no-automatic-stubbing

	Assumptions
	-div-round-down
	-no-def-init-glob
	-size-in-bytes
	-allow-ptr-arith-on-struct
	-ignore-float-rounding
	-detect-unsigned-overflows
	-known-NTC proc1[,proc2[,...]]

	Automatic Orange Tester
	-prepare-automatic-tests

	Others
	-extra-flags option-extra-flag
	-c-extra-flags flag

	Precision/Scaling
	-quick
	Benefits
	Limitations

	-O(0-3)
	-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
	-from verification-phase
	-to verification-phase
	-context-sensitivity "proc1[,proc2[,...]]"
	-context-sensitivity-auto
	-path-sensitivity-delta number
	-retype-pointer
	-retype-int-pointer
	-k-limiting number
	-no-fold
	-respect-types-in-globals
	-respect-types-in-fields
	-inline "proc1[,proc2[,...]]"
	-lightweight-thread-model

	MultiTasking (PolySpace ™ Server for C/C++ Product Only)
	-entry-points str1[,str2[,...]]
	-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	-temporal-exclusions-file file_name

	Batch Options
	-server server_name_or_ip[:port_number]
	-sources-list-file file_name
	-v | -version
	-h[elp]

	Complete Examples
	Simple C Example
	Apache Example
	cxref Example
	T31 Example
	Dishwasher1 Example
	Satellite Example

	Static Verification
	What is Static Verification
	Exhaustiveness

	Glossary

	tables
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny
	Example: -dialect keil -sfr-types sfr=8
	Example: -dialect iar -sfr-types sfr=8

